A model of the propagation of a terahertz pulse through ceramics based on hydroxyapatite
Rezvanova A.E.
1, Kudryashov B.S.
1, Skorobogatov D.D.
1,2, Ponomarev A.N.
1,21Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
2Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
Email: ranast@ispms.ru, bsk3@ispms.ru, danilskor1@gmail.com, alex@ispms.ru
Computer models of transmission of terahertz (THz) radiation through samples of porous composite ceramics based on hydroxyapatite (HA) with carbon nanotubes (CNTs) additives are developed by using finite element method. The models allowed us to estimate the influence of CNTs additives with 0.1 and 0.5 wt.% concentrations on the structure and optical properties of the samples. Optical properties of the model samples, such as refractive index and absorption coefficient, were determined by using the modeling results of the intensity and transmission rate of THz radiation. It was found, that the increasing of the absorption coefficient and the decreasing of the refractive index are observed with an increase of the porosity of the material, which is due to the denser structure of the material with addition of CNTs. The obtained optical parameters of the HA and HA-CNTs samples models have a qualitative agreement with experimental data and with the literature parameters of bone tissues. Keywords: modeling, finite element method, optical properties, porosity.
- M.S. Barabashko, M.V. Tkachenko, A.A. Neiman, A.N. Ponomarev, A.E. Rezvanova. Appl. Nanosci., 10, 2601 (2020). DOI: 10.1007/s13204-019-01019-z
- R.G. Ribas, V.M. Schatkoski, T.L. do Amaral Montanheiro, B.R.C. deMenezes, C. Stegemann, D.M.G. Leite, G.P. Thim. Ceram. Intern., 45 (17), 21051 (2019). DOI: 10.1016/j.ceramint.2019.07.096
- Y. Han, Q. Wei, P. Chang, K. Hu, O.V. Okoro, A. Shavandi, L. Nie. Crystals, 11 (4), 353 (2021). DOI: 10.3390/cryst11040353
- T. Zhang, W. Cai, F. Chu, F. Zhou, S. Liang, C. Ma, Y. Hu. Compos. Part A Appl. Sci. Manuf., 128, 105681 (2020). DOI: 10.1016/j.compositesa.2019.105681
- E. Fiume, G. Magnaterra, A. Rahdar, E. Vern., F. Baino. Ceramics, 4 (4), 542 (2021). DOI: 10.3390/ceramics4040039
- X. Zhao, J. Zheng, W. Zhang, X. Chen, Z. Gui. Ceram. Intern., 46 (6), 7903 (2020). DOI: 10.1016/j.ceramint.2019.12.010
- P. Khalid, V.B. Suman. J. Bionanosci., 11 (3), 233 (2017). DOI: 10.1166/jbns.2017.1431
- P. Greg, K. Sing. Adsorbciya, udel'naya poverhnost', poristost' (Mir, M., 1984) (in Russian)
- O.J. Akinribide, G.N. Mekgwe, S.O. Akinwamide, F. Gamaoun, C. Abeykoon, O.T. Johnsone, P.A. Olubambi. J. Mater. Res. Tech., 21, 712 (2022). DOI: 10.1016/j.jmrt.2022.09.027
- A. Wagner, B. Ratzker, S. Kalabukhov, M. Sokol, N. Frage. J. Eur. Cer. Soc., 39 (4), 1436 (2019). DOI: 10.1016/j.jeurceramsoc.2018.11.006
- R. Shahmiri, O.C. Standard, J.N. Hart, C.C. Sorrell. J. Prosthet. Dent., 119 (1), 36 (2018). DOI: 10.1016/j.prosdent.2017.07.009
- F. Moussy. J. Biomed. Mat. Res. A, 94 (4), 1001 (2010). DOI: 10.1002/jbm.a.32866
- A. Faingold, S.R. Cohen, R. Shahar, S. Weiner, L. Rapoport, H.D. Wagner. J. Biomech., 47 (2), 367 (2014). DOI: 10.1016/j.jbiomech.2013.11.022
- M.S. Barabashko, M.V. Tkachenko, A.E. Rezvanova, A.N. Ponomarev. Russ. J. Phys. Chem., 95 (5), 1017 (2021). DOI: 10.1134/S0036024421050058
- D. Veljovic, G.D. Vukovic, I. Steins, E. Palcevskis, P. Uskokovic, R. Petrovic, D. Jana ckovic. Sci. Sinter., 45 (2), 33 (2013). DOI: 10.2298/SOS1302233V
- D. Lahiri, V. Singh, A.K. Keshri, S. Seal, A. Agarwal. Carbon, 48 (11), 3103 (2010). DOI: 10.1016/j.carbon.2010.04.047
- S. Mukherjee, B. Kundu, A. Chanda, S. Sen. Ceram. Int., 41 (3), 3766 (2015). DOI: 10.1016/j.ceramint.2014.11.052
- B. Henriques, D. Fabris, E. Lopes, A.C. Moreira, I.F. Mantovani, C.P. Fernandes, M.C. Fredel. Adv. Eng. Mater., 24 (1), 2100624 (2022). DOI: 10.1002/adem.202100624
- L. Yu, P. Jia, Y. Song, B. Zhao, Y. Pan, J. Wang, H. Cui, R. Feng, H. Li, X. Cui, Z. Gao, X. Fang, L. Zhang. J. Mater. Res. Tech., 18, 3541 (2022). DOI: 10.1016/j.jmrt.2022.04.035
- A.S. Nikoghosyan, H. Ting, J. Shen, R.M. Martirosyan, M.Yu. Tunyan, A.V. Papikyan, A.A. Papikyan. J. Contemp. Phys. Arme, 51, 56 (2016). DOI: 10.3103/S1068337216030087
- P. Bawuah, T. Ervasti, N. Tan, J.A. Zeitler, J. Ketolainen, K.-E. Peiponen. Int. J. Pharm., 509 (1-2), 439 (2016). DOI: 10.1016/j.ijpharm.2016.06.023
- Yu.V. Kistenev, V.V. Nikolaev, O.S. Kurochkina, A.V. Borisov, E.A. Sandykova, N.A. Krivova, D.K. Tuchina, P.A. Timoshina. Opt. Spectr., 126, 523 (2019). DOI: 10.1134/S0030400X19050138
- P. Bawuah, D. Markl, D. Farrell, M. Evans, A. Portieri, A. Anderson, D. Goodwin, R. Lucas, J.A. Zeitler. J. Inf. Millim. Te. W., 41, 450 (2020). DOI: 10.1007/s10762-019-006590
- D.S. Bezmelnitsin, D.A. Lizunkova, I.A. Shishkin. Vestnik molodyh uchenyh i specialistov Samarskogo un-ta, 1 (16), 261 (2020) (in Russian)
- J. Fish, T. Belytschko. A First Course in Finite Elements (John Wiley \& Sons, 313, 2007)
- P.E. Sizin. Mining information and analytical bulletin, 5, 43 (2023) (in Russian)
- S. Fiocchi, E. Chiaramello, A. Marrella, G. Suarato, M. Bonato, M. Parazzini, P. Ravazzani. PloS one, 17 (9), E0274676 (2022). DOI: 10.1371/journal.pone.0274676
- V.V. Dmitriev, T.V. Gandzha, I.M. Dolganov, N.V. Aksenova. Pet. Coal., 59 (4), 429 (2017)
- T.V. Gandzha, K.A. Isakov, A.V. Shapovalov. Russ. Phys. J., 65 (4), 663 (2022). DOI: 10.1007/s11182-022-02682-6
- COMSOL [Electronic resource] Available at: https://www.comsol.ru/. Date of access: 28.11.2023
- Ray Optics Module User's Guide [Electronic resource] https://doc.comsol.com/5.4/doc/com.comsol.help.roptics/Ray OpticsModuleUsersGuide.pdf. Date of access: 28.11.2023
- A.E. Rezvanova, B.S. Kudryashov, A.N. Ponomarev, A.I. Knyazkova, V.V. Nikolaev, Y.V. Kistenev. Nanosystems: Phys. Chem. Math., 14 (5), 530 (2023). DOI: 10.17586/2220-8054-2023-14-5-530-538
- S.I. Borisenko, O.G. Revinskaya, N.S. Kravchenko, A.V. Chernov. Pokazatel' prelomleniya sveta i metody ego eksperimental'nogo opredeleniya (Izd-vo Tomskogo politekh. un-ta, Tomsk, 2014) (in Russian)
- P. Huang, B. Zhou, Q. Zheng, Y. Tian, M. Wang, L. Wang, J. Li, W. Jiang. Adv. Mater., 32 (1), 905951 (2020). DOI: 10.1002/adma.201905951
- M. Plazanet, J. Tasseva, P. Bartolini, A. Taschin, R. Torre, C. Combes, C. Rey, A. Di Michele, M. Verezhak, A. Gourrier. PLoS One, 13 (8), E0201745 (2018). DOI: 10.1371/journal.pone.0201745
- M. Bessou, B. Chassagne, J.-P. Caumes, C. Pradere, P. Maire, M. Tondusson, E. Abraham. Appl. Opt., 51 (28), 6738 (2012). DOI: 10.1364/AO.51.006738
- M.R. Stringer, D.N. Lund, A.P. Foulds, A. Uddin, E. Berry, R.E. Miles, A.G. Davies. Phys. Med. Biol., 50 (14), 3211 (2005). DOI: 10.1088/0031-9155/50/14/001
- A.S. Nikoghosyan, J. Shen, H. Ting. Physical Properties of Human Jawbone, Spongy Bone, Collagen and Cerabone Bone Transplantation Material in Range of 0.2 to 2.5 THz, 44th Intern. Conf. on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, IEEE, 1-2, (2019). DOI: 10.1109/IRMMW-THz.2019.8873754
- J. Cai, M. Guang, J. Zhou, Y. Qu, H. Xu, Y. Sun, H. Xiong, S. Liu, X. Chen, J. Jin, X. Wu. Opt. Express, 30 (8), 13134 (2022). DOI: 10.1364/OE.452769
- Y.C. Sim, I. Maeng, J.-H. Son. Curr. Appl. Phys., 9 (5), 946 (2009). DOI: 10.1016/j.cap.2008.09.008
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.