Endohedral small metallofullerenes as a basis for the formation of heterostructures
El Zanin A. R.1, Boroznin S. V. 1, Zaporotskova I. V. 1, Boroznina N. P. 1
1Volgograd State University, Volgograd, Russia
Email: nmtb-201_341523@volsu.ru

PDF
The study of heterostructures with specific physico-chemical properties useful for the needs of nanoelectronics, microsystems engineering and other branches of nanotechnology is important and relevant. A separate class of chemical compounds in a number of such materials are structures that include various modifications of carbon nanoobjects. One of the most popular nanostructures are fullerenes, the study of which was started at the end of the XX century and continues to the present day. Now the attention of researchers is focused on fullerenes with a small diameter, the composition of which is described by the formulas C20, C24, C28. It is known that the presence of a cavity in fullerenes makes it possible to intercalate them with atoms and even small molecules. Endohedral complexes of fullerenes with alkali (Li, Na, K) and transition (Ti, Zn) metals were considered. The study was carried out using quantum chemical modeling methods within the framework of density functional theory in the B3LYP variant using the basic sets 6-311++G(d,p) and cc-pVDZ. We obtained optimized structures of endohedral fullerenes M@C20,24,28 (M = Li, Na, K), as well as Zn@C28 and Ti@C28, and calculated the values of the energy gap of each complex. Based on this, it was concluded that it is possible to form heterostructures based on some of these materials. Keywords: endohedral metallofullerenes, heterostructures, charge distribution, energy gap.
  1. P.V. Pham, S.C. Bodepudi, K. Shehzad, Y. Liu, Y. Xu, B. Yu, X. Duan. Chem. Rev., 122 (6), 6514 (2022). DOI: 10.1021/acs.chemrev.1c00735
  2. D. Jena, K. Banerjee, G.H. Xing. Nat. Mater., 13 (12), 1076 (2014). DOI: 10.1038/nmat4121
  3. R. Sakthivel, M. Keerthi, R.J. Chung, J.H. He. Prog. Mater. Sci., 132, 101024 (2023). DOI: 10.1016/j.pmatsci.2022.101024
  4. Y. Zhang, Y. Li, Q. You, J. Sun, K. Li, H. Hong, L. Kong, M. Zhu, T. Deng, Z. Liu. Nanoscale, 15 (3), 1402 (2023). DOI: 10.1039/D2NR05819G
  5. J. Hao, H. Lu, L. Mao, X. Chen, M.C. Beard, J.L. Blackburn. ACS Nano, 15 (4), 7608 (2021). DOI: 10.1021/acsnano.1c01134
  6. Lv. Qian, Lv. Ruitao. Carbon, 145, 240 (2019). DOI: 10.1016/j.carbon.2019.01.008
  7. A.N. Gusev, A.S. Mazinov, A.S. Tyutyunik, V.S. Gurchenko. RENSIT, 11 (3), 331 (2019) (in Russian). DOI: 10.17725/rensit.2019.11.331
  8. A.V. Eletskii. Phys.-Usp., 43 (2), 111 (2000). DOI: 10.1070/PU2000v043n02ABEH000646
  9. L. Mengyang, Z. Ruisheng, D. Jingshuang, Z. Xiang. Coord. Chem. Rev., 471, 214762 (2022). DOI: 10.1016/j.ccr.2022.214762
  10. Z.N. Cisneros-Garci a, D.A. Herna ndez, F.J. Tenorio, J.L. Rodri guez-Zavala. Mol. Phys., 118 (14), e1705411 (2020). DOI: 10.1080/00268976.2019.1705411
  11. J.S. Nam, Y. Seo, J. Han, J.W. Lee, K. Kim, T. Rane, H.D. Kim, I. Jeon. Chem. Mater., 35 (20), 8323 (2023). DOI: 10.1021/acs.chemmater.3c01192
  12. X. Zhou, W. Zhang, S. Wang, F. Wen, Q. Chen, X. Shen, X. Hu, C. Peng, Z. Ma, M. Zhang, Y. Huang, S. Yang, W. Zhang. Sci. China Mater., 65, 2325 (2022). DOI: 10.1007/s40843-021-1983-3
  13. M. Su, Y. Hu, S. Yang, A. Yu, P. Peng, L. Yang, P. Jin, B. Su, F.F. Li. Adv. Electron. Mater., 8 (1), 2100753 (2022). DOI: 10.1002/aelm.202100753
  14. M. Alshammari, T. Alotaibi, M. Alotaibi, A.K. Ismael. Energies, 16 (11), 4342 (2023). DOI: 10.3390/en16114342
  15. T. Wang, C. Wang. Small, 15 (48), 1901522 (2019). DOI: 10.1002/smll.201901522
  16. E.M. Shpilevsky, S.A. Filatov, A.G. Soldatov, G. Shilagardi. V sb. Materialy i struktury sovremennoy elektroniki: Materialy X Mezhdunarodnoj nauchnoj konferencii, edited by V.B. Odzhaev (main ed.), N.A. Poklonsky, V.A. Pilipenko, P. Zhukovsky, V.V. Petrov, M.G. Lukashevich, N.M. Lapchuk, V.S. Prosolovich, I.I. Azarko, N.I. Gorbachuk, S.A. Vyrko, T.M. Lapchuk, A.N. Oleshkevich (Belarusian State University, Minsk, 2022), p. 575 (in Russian)
  17. J. Li, L. Chen, L. Yan, Z. Gu, Z. Chen, A. Zhang, F. Zhao. Molecules, 24 (13), 2387 (2019). DOI: 10.3390/molecules24132387
  18. I.V. Mikheev, M.M. Sozarukova, D.Y. Izmailov, I.E. Kareev, E.V. Proskurnina, M.A. Proskurnin. Int. J. Mol. Sci., 22, 5838 (2021). DOI: 10.3390/ijms22115838
  19. W.P. Kopcha, R. Biswas, Y. Sun, S.T.D. Chueng, H.C. Dorn, J. Zhang. Chem. Commun., 59, 13551 (2023). DOI: 10.1039/D3CC03603K
  20. V.T. Lebedev, N.A. Charykov, O.S. Shemchuk, I.V. Murin, D.A. Nerukh, A.V. Petrov, D.N. Maystrenko, O.E. Molchanov, V.V. Sharoyko, K.N. Semenov. Colloids and Surfaces B: Biointerfaces, 222, 113133 (2023). DOI: 10.1016/j.colsurfb.2023.113133
  21. A.N. Gusev, A.S. Mazinov, A.I. Shevchenko, A.S. Tyutyunik, V.S. Gurchenko, E.V. Braga. Prikladnaya fizika, 6, 48 (2019) (in Russian)
  22. H.J. Zhou, D.H. Xu, O.H. Yang, X.Y. Liu, G. Gui, L. Li Dalton Trans., 50 (19), 6725 (2021)
  23. P. Zhang, T. Xue, Z. Wang, W. Wei, X. Xie, R. Jia, W. Li. Inorg. Chem. Front., 10, 7238 (2023). DOI: 10.1039/D3QI01105D
  24. X.H. Cai, Q. Yang, M. Wang. Appl. Surf. Sci., 575, 151660 (2022). DOI: 10.1016/j.apsusc.2021.151660
  25. J. Li, R. Wu. Appl. Phys. Lett., 120 (2), 023301 (2022). DOI: 10.1063/5.0076267
  26. B. Mortazavi, Y. Remond, H. Fang, T. Rabczuk, X. Zhuang. Mater. Today Commun., 36, 106856 (2023). DOI: 10.1016/j.mtcomm.2023.106856
  27. P.W. Dunk, N.K. Kaiser, M. Mulet-Gas, A. Rodri guez-Fortea, J.M. Poblet, H. Shinohara, C.L. Hendrickson, A.G. Marshall, H.W. Kroto. J. Am. Chem. Soc., 134 (22), 9380 (2012). DOI: 10.1021/ja302398h
  28. P.W. Dunk, M. Mulet-Gas, Y. Nakanishi, N.K. Kaiser, A. Rodri guez-Fortea, H. Shinohara, J.M. Poblet, A.G. Marshall, H.W. Kroto. Nat. Commun., 5, 5844 (2014). DOI: 10.1038/ncomms6844
  29. J. Zhao, Q. Du, S. Zhou, V. Kumar. Chem. Rev., 120 (17), 9021 (2020). DOI: 10.1021/acs.chemrev.9b00651
  30. A.V. Silant'ev. Phys. Metals Metallogr., 119 (6), 511 (2018). DOI: 10.1134/S0031918X18060133
  31. A.V. Silant'ev. Russ. Phys. J. 62, 925 (2019). DOI: 10.1007/s11182-019-01798-6
  32. A.V. Silant'ev. Phys. Metals Metallogr., 121, 195 (2020). DOI: 10.1134/S0031918X20010160
  33. A.V. Silant'ev. Phys. Metals Metallogr., 121, 501 (2020). DOI: 10.1134/S0031918X20060149
  34. A.V. Silant'ev. Phys. Metals Metallogr., 122, 315 (2021). DOI: 10.1134/S0031918X21040098
  35. I.V. Zaporotskova, N.P. Boroznina, S.V. Boroznin, E.S. Drychkov, Y.V. Butenko, M.B. Belonenko. Bull. Russ. Acad. Sci. Phys., 86 (6), 673 (2022). DOI: 10.3103/S1062873822060314
  36. I.V. Zaporotskova, S.V. Boroznin, M.B. Belonenko, E.S. Drychkov, Y.V. Butenko. Bull. Russ. Acad. Sci. Phys., 86 (12), 1450 (2022). DOI: 10.3103/S1062873822120292
  37. S.V. Boroznin, I.V. Zaporotskova, P.A. Zaporotskov, N.P. Boroznina, M. Govindasami, L.V. Kozhitov, A.V. Popkova. Izvestiya vuz. Materialy elektronnoy tekhniki , 25 (2), 137 (2022). (in Russian). DOI: 10.17073/1609-3577-2022-2-137-145
  38. W. Koch, M.C. Holthausen. A Chemist's Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2001)
  39. P. Schwerdtfeger, L.N. Wirz, J. Avery. WIREs Comput. Mol. Sci., 5 (1), 96 (2015). DOI: 10.1002/wcms.1207
  40. V. Andova, F. Kardov s, R. v Skrekovski. Ars Mathematica Contemporanea, 11, 353 (2016)
  41. G.R. Schleder, A.C.M. Padilha, C.M. Acosta, M. Costa, A. Fazzio. J. Phys.: Mater., 2 (3), 032001 (2019). DOI: 10.1088/2515-7639/ab084b
  42. A.H. Mazurek, . Szeleszczuk, D.M. Pisklak. Pharmaceutics, 12 (5), 415 (2020). DOI: 10.3390/pharmaceutics12050415
  43. Q. He, B. Yu, Z. Li, Y. Zhao. Energy Environ. Mater., 2 (4), 264 (2019). DOI: 10.1002/eem2.12056
  44. E. Napio rkowska, K. Milcarz, . Szeleszczuk. Int. J. Mol. Sci., 24 (18), 14155 (2023). DOI: 10.3390/ijms241814155
  45. E.K. Sarikaya, O. Dereli, S. Bah celi. Adiyaman Univ. J. Sci., 11, 456 (2021). DOI: 10.37094/adyujsci.938050
  46. K. Soyarslan, B. Ortatepe, B. Yurduguzel, M.T. Gulluoglu, Y. Erdogdu. J. Mol. Model., 28 (11), 352 (2022). DOI: 10.1007/s00894-022-05348-9
  47. E.R. Davidson, A.E. Clark. Int. J. Quantum Chem., 122 (8), e26860 (2022). DOI: 10.1002/qua.26860
  48. S.C. North, K.R. Jorgensen, J. Pricetolstoy, A.K. Wilson. Front. Chem., 11, 1152500 (2023). DOI: 10.3389/fchem.2023.1152500
  49. N.M. O'Boyle, A.L. Tenderholt, K.M. Langner. J. Comp. Chem., 29, 839 (2008). DOI: 10.1002/jcc.20823

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru