Dependence of the superionic transition temperature on the characteristic size and morphology of actinide nanooxides
Chernyshev A. P.
1,21Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
Email: alfred.chernyshev@solid.nsc.ru
The possibility of applying the Bredig rule to determine the temperature of the superionic transition in stoichiometric actinide nanooxides is considered. The comparison of the nanothermodynamic approach with calculations by the method of molecular dynamics is carried out. It is shown that both the morphology and the characteristic size of nanoobjects of actinide dioxides significantly affect the temperature of the superionic transition: the temperature of the superionic transition at a fixed value of the characteristic size of nanoobjects increases in the sequence spherical nanoparticles-nanowires-thin films and decreases with decreasing characteristic size. The possibility of controlling the temperature of the superionic transition in nanoobjects of actinide dioxides is discussed. Keywords: Nanoparticles of actinide dioxides, nanowires of actinide dioxides, thin films of actinide dioxides, Bredig rule, superionic transition, Lindemann criterion.
- P.C.M. Fossati, A. Chartier, A. Boulle. Front. Chem. 9, 723507 (1921)
- C. Ronchi, J.P. Hiernaut. J. Alloys Compd. 240, 179 (1996)
- J.P. Hiernaut, G.J. Hyland, C. Ronchi. Int. J. Thermophys. 14, 259 (1993)
- International Atomic Energy Agency, Thermophysical properties database of materials for light water reactors and heavy water reactors. Final report of a coordinated research project 1999--2005. Non-serial Publications, IAEA-TECDOC-1496, IAEA, Vienna (2006). 397 p
- M.A. Korneva, S.V. Starikov. Phys. solid state 58, 1, 170 (2016). (in Russian)
- S.D. Ganay, B. Akgenc. Tasseven. High Temp. Mater. Proc. 35, 10, 999 (2016)
- D. Bathellier, M. Lainet, M. Freyss, P. Olsson, E. Bourasseau. J. Nucl. Mater. 549, 152877 (2021)
- T.R. Pavlov, M.R. Wenman, L. Vlahovic, D. Robba, R.J.M. Konings, P. Van Uffelen, R.W. Grimes. Acta Materialia 139, 138 (2017)
- R.Yu. Mahmud-Akhunov, M.Yu. Tikhonchev, V.V. Svetukhin. ZhTF 83, 8, 8 (2013). (in Russian)
- S.I. Potashnikov, A.S. Boyarchenkov, K.A. Nekrasov, A.Ya. Kupryazhkin. J. Nucl. Mater. 419, 217 (2011)
- A.S. Boyarchenkov, S.I. Potashnikov, K.A. Nekrasov, A.Ya. Kupryazhkin. Rasplavy 2, 32 (2012). (in Russian)
- S.S. Batsanov. Zhurn. fiz. khimii 86, 11, 1890 (2012). (in Russian)
- M.W.D. Cooper, S.T. Murphy, M.J.D. Rushton, R.W. Grimes. J. Nucl. Mater. 461, 206 (2015)
- K. Kobayashi, M. Okumura, H. Nakamura, M. Itakura, M. Machida, M.W.D. Cooper. Sci. Rep. 12, 9808 (2022)
- M. Chollet, J. Leechelle, R.C. Belin, J.-C. Richaud. J. Appl. Cryst. 47, 1008 (2014)
- H. Zhang, X. Wang, J.F. Douglas. J. Chem. Phys. 151, 071101 (2019)
- F.G. Shi. J. Mater. Res. 9, 1307 (1994)
- Q. Jiang, H.X. Shi, M. Zhao. J. Chem. Phys. 111, 5, 2176 (1999)
- A.P. Regel, V.M. Glazov. FTP 29, 5, 782 (1995). (in Russian)
- C. Gueneau, A. Chartier, P. Fossati, L. Van Brutzel, P. Martin. 7.03-Thermodynamic and thermophysical properties of the actinide oxides. In Comprehensive Nuclear Materials. 2nd ed. Elsevier (2020). V. 7. P. 111--154
- R.J.M. Konings, O. Benevs, A. Kovacs, D. Manara, D. Sedmidubsky, L. Gorokhov, V.S. Iorish, V. Yungman, E. Shenyavskaya, E. Osina. J. Phys. Chem. Ref. Data 43, 013101 (2014)
- E. Epifano, C. Gueneau, R.C. Belin, R. Vauchy, F. Lebreton, J.-C. Richaud, A. Joly, C. Valot, P.M. Martin. Inorg. Chem. 56, 7416 (2017)
- G. Leinders, T. Cardinaels, K. Binnemans, M. Verwerft. J. Nucl. Mater. 459, 135 (2015)
- Q. Jiang, Z. Wen, Thermodynamics of Materials. Higher Education Press, Beijing and Springer-Verlag, Berlin Heidelberg (2011). 300 p
- F. Cappia, D. Hudry, E. Courtois, A. Janb en, L. Luzzi, R.J.M. Konings, D. Manara. Mater. Res. Express 1, 025034 (2014)
- F. Cappia, R. Jovani-Abril, J. Spino, L. Luzzi, A. Janb en, D. Manara. Prog. Nuc. Energ. 72, 11 (2014)
- M. Jin, M. Khafizov, C. Jiang, S. Zhou, C.A. Marianetti, M.S. Bryan, M.E. Manley, D.H. Hurley. J. Phys.: Condens. Matter. 33, 275402 (2021).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.