Kamzin A. S.1, Semenov V. G.
2, Kamzina L. S.1
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: ASKam@mail.ioffe.ru
Magnetic nanoparticles of Zn-substituted CoFe2O4 spinel ferrites Co1-xZnxFe2O4 (at x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were successfully synthesized by chemical co-precipitation. The structural, morphological and magnetic properties of the obtained particles were studied and characterized by X-ray diffraction (XRD), vibrating-sample magnetometry (VSM), Raman and Mossbauer spectroscopy. The introduction of zinc ions causes noticeable changes in the structural and magnetic properties of spinel ferrite. The sizes of particles of Co1-xZnxFe2O4 change from 10 to 3 nm with an increase of the number of Zn ions according to X-ray data and their sizes change from 15 to 4 nm according to Mossbauer data. It was found that the saturation magnetization increases with an increase of the amount of Zn to x=0.4 and gradually decreases with a further increase of the concentration of Zn. The important information about the difference between the magnetic structures of the surface layer and the volume of particles was obtained for the first time using Mossbauer spectroscopy without external magnetic fields. A collinear ordering of spin moments is observed in the volume of magnetic nanoparticles of ferrite Co1-xZnxFe2O4, whereas a canting spin structure is observed on the surface of particles because of the impact of the surface. The mechanism of transition of spinel ferrite MNPs from a magnetically ordered to a paramagnetic state with the introduction of paramagnetic ions is described. Studies have shown that the obtained nanoparticles are perspective in view of biomedical applications. Keywords: spinel ferrites, magnetic structure, superparamagnetism, Mossbauer spectroscopy, materials for biomedicine.
- J.A. Ramos-Guivar, E.O. Lopez, J.-M. Greneche, F.J. Litterst, E.C. Passamani. Appl. Surf. Sci. 538, 148021 (2021). https://doi.org/10.1016/j.apsusc.2020.148021
- M. Abdolrahimi, M. Vasilakaki, S. Slimani, N. Ntallis, G. Varvaro, S. Laureti, C. Meneghini, K.N. Trohidou, D. Fiorani, D. Peddis. Nanomater. 11, 7, 1787 (2021). https://doi.org/10.3390/nano11071787
- S.A. Novopashin, M.A. Serebryakova, S.Ya. Khmel. Teplofizika i aeromekhanika 22, 4, 411 (2015). (in Russian)
- V.A. Suchilin, I.E. Gribut, S.A. Golikov. Elektrotekh. i inform. komplekses and sistemy 7, 4, 41 (2011). (in Russian)
- E.M. Materon, C.M. Miyazaki, O. Carr, N. Joshi, P.H.S. Picciani, C.J. Dalmaschio, F. Davis, F.M. Shimizu. Appl. Surf. Sci. Adv. 6, 100163 (2021). https://doi.org/10.1016/j.apsadv.2021.100163
- M.G.M. Schneider, M.J. Marti n, J. Otarola, E. Vakarelska, V. Simeonov, V. Lassalle, M. Nedyalkova. Pharmaceutics 14, 1, 204 (2022). https://doi.org/10.3390/pharmaceutics14010204
- I.M. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, C.V.V.M. Gopi. Magnetochemistry 5, 4, 67 (2019). DOI: 10.3390/magnetochemistry5040067
- A. Purohit, L. Soni, L. Thakur, J. Shrivastava, K. Khan, K. Shrivastava, S. Jain. Internat. J. Med. Sci. Pharma Res. 8, 4, 1 (2022). DOI: http://dx.doi.org/10.22270/ijmspr.v8i4.50
- Magnetic Nanoferrites and their Composites / Eds Susheel Kalia, Rohit Jasrotia, Virender Pratap Singh. Elsevier Ltd. (2023). https://doi.org/10.1016/B978-0-323-96115-8.00004-0
- Springer Ser. Mater. Sci. / Eds D. Peddis, S. Laureti, D. Fiorani. New Trends in Nanoparticle Magnetism. Part IV. Advanced Magnetic Nanoparticles Systems for Applications. V. 308. 2021. P. 301. https://doi.org/10.1007/978-3-030-60473-8
- V. Socoliuc, D. Peddis, V.I. Petrenko, M.V. Avdeev, D. Susan-Resiga, T. Szabo, R. Turcu, E. Tombacz, L. Vekas. Magnetochem. 6, 2 (2020). DOI: 10.3390/magnetochemistry6010002
- B. Wareppam, E. Kuzmann, V.K. Garg, L.H. Singh. J. Mater. Res. 38, 937 (2023). DOI:10.1557/s43578-022-00665-4.
- Ferrite Nanostructured Magnetic Materials / Eds J.P. Singh, K.H. Chae, R.C. Srivastava, O.F. Caltun. Woodhead Publishing Series Elsevier Ltd. (2023). 892 p. https://doi.org/10.1016/C2020-0-00253-7
- P.A. Vinosha, A. Manikandan, A.S.J. Ceicilia, A. Dinesh, G.F. Nirmala, A.C. Preetha, Y. Slimani, M.A. Almessiere, A. Baykal, B. Xavier. Ceram. Int. 47, 10512 (2021). https://doi.org/10.1016/j.ceramint.2020.12.289
- Syed Ismail Ahmad. J. Magn. Magn. Mater. 562, 169840 (2022). https://doi.org/10.1016/j.jmmm.2022.169840
- M. Sajid, J. P otka-Wasylka. Microchem. J. 154, 104623 (2020). https://doi.org/10.1016/j.microc.2020.104623
- F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A.J. Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, M.S. Asl. Ceram. Int. 46, 18391 (2020). https://doi.org/10.1016/j.ceramint.2020.04.202
- A.S. Kamzin, D.S. Nikam, S.H. Pawar. Phys. Solid State 59, 1, 156 (2022). DOI: 10.1134/S1063783417010127
- A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State 64, 6, 714 (2022). DOI: 10.21883/PSS.2022.06.53838.298
- K.K. Kefeni, T.A.M. Msagati, T.T.I. Nkambule, B.B. Mamba. Mater. Sci. Eng. C 107, 110314 (2020). https://doi.org/10.1016/j.msec.2019.110314
- A. Mittal, I. Roy, S. Gandhi. Magnetochem, 8, 107 (2022). https://doi.org/10.3390/magnetochemistry8090107
- C. Janko, T. Ratschker, K. Nguyen, L. Zschiesche, R. Tietze, S. Lyer, C. Alexiou. Frontiers Oncology 9, 59 (2019). DOI: 10.3389/fonc.2019.00059
- O.F. Odio, E. Reguera. In: Magnetic Spinels --- Synthesis, Properties and Applications. IntechOpen. (2017). Ch. 9. P. 186. http://dx.doi.org/10.5772/67513/
- D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar. RSC Adv. 5, 2338 (2015). DOI: 10.1039/c4ra08342c
- J. Mohapatra, M. Xing, J.P. Liu. Materials 12, 3208 (2019). DOI: 10.3390/ma12193208
- M. Albino, E. Fantechi, C. Innocenti, A. Lopez-Ortega, V. Bonanni, G. Campo, F. Pineider, M. Gurioli, P. Arosio, T. Orlando et al. J. Phys. Chem. C 123, 6148 (2019)
- V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky, C. Sangregorio, C. Innocenti, N.T.K. Thanh, C. Cannas. Nanoscale 8, 10124 (2016)
- M.M. Naik, H.S.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, R. Viswanath. Nano-Struct. Nano-Objects 19, 100322 (2019). https://doi.org/10.1016/j.nanoso.2019.100322
- V. Pilati, R.C. Gomes, G. Gomide, P. Coppola, F.G. Silva, F.L.O. Paula, R. Perzynski, G.F. Goya, R. Aquino, J. Depeyrot. J. Phys. Chem. C 122, 3028 (2018)
- A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State 65, 3, 470 (2023). DOI: 10.21883/PSS.2023.03.55591.544
- T. Iwamoto, T. Ishigaki. J. Phys.: Conf. Ser. 441, 012 034 (2013)
- P. Scherrer. Gottinger Nachrichten Math. Phys. 2, 98 (1918)
- V.G. Semenov, V.V. Panchuk. Mossbauer Spectra Processing Software MossFit. Private message.
- M. Sundararajana, V. Sailajab, L.J. Kennedya, J.J. Vijaya. Ceram. Int. 43, 540 (2017). http://dx.doi.org/10.1016/j.ceramint.2016.09.191
- A. Omelyanchik, K. Levada, S. Pshenichnikov, M. Abdolrahim, M. Baricic, A. Kapitunova, A. Galieva, S. Sukhikh, L. Astakhova, S. Antipov, B. Fabiano, D. Peddis, V. Rodionova. Materials 13, 5014 (2020). DOI: 10.3390/ma13215014
- F. Nakagomi, P.E.N. de Souza, T.J. Castro, V.K. Garg, A.C. Oliveira, F.C. de Silva, Franco Jr., P.C. Morais, S.W. da Silva. J. All. Comp. 842, 155751 (2020). https://doi.org/10.1016/j.jallcom.2020.155751
- L.B. Tahar, H. Basti, F. Herbst, L.S. Smiri, J.P. Quisefit, N. Yaacoub, J.M. Gren\`eche, S. Ammar. Mater. Res. Bull. 47, 2590 (2012). http://dx.doi.org/10.1016/j.materresbull.2012.04.080
- P. Monisha, P. Priyadharshini, S.S. Gomathi, M. Mahendran, K. Pushpanathan. App. Phys. A 125, 736 (2019). https://doi.org/10.1007/s00339-019-3014-x
- V.K. Lakshmi, G.S. Kumar, A. Anugraha, T. Raguram, K.S. Rajni. IOP Conf. Ser.: Mater. Sci. Eng. 577, 012068 (2019). DOI: 10.1088/1757-899X/577/1/012068
- J.P. Singh, R.C. Srivastava, H.M. Agrawal, R. Kumar. J. Raman Spectrosc. 42, 1510 (2011). DOI: 10.1002/jrs.2902
- P.T. Phong, P.H. Nam, N.X. Phuc, B.T. Huy, L.T. Lu, D.H. Manh, IN-JA Lee. Met. Mater. Trans. A 50, 1571 (2019). https://doi.org/10.1007/s11661-018-5096-z
- R.S. Yadav, J. Havlica, M. Hnatko, P. vSajgali k, C. Alexander, M. Palou, E. Bartonckova, M. Bohavc, F. Frajkorova, J. Masilko, M. Zmrzly, L. Kalina, M. Hajduchova, V. Enev. J. Magn. Magn. Mater. 378, 190 (2015). https://doi.org/10.1016/j.jmmm.2014.11.027
- S.W. da Silva, M. Naik, F. Nakagomi, M.S. Silva, A. Franco Jr., V.K. Garg, A.C. Oliveira, P.C. Morais. J. Nanopart. Res. 14, 798 (2012). DOI: 10.1007/s11051-012-0798-4
- J. Smit, H.P.J. Wijn. Les ferrites. Les Proprietes: Physiques des Oxydes Ferrimagnetiques en Relation avec leurs Applications Techniques. Bibliothe`que Technique de Philips. (1961). P. 400
- R. Arulmurugana, G. Vaidyanathana, S. Sendhilnathanb, B. Jeyadevan. Physica B 363, 225 (2005). DOI: 10.1016/j.physb.2005.03.025
- G. Vaidyanathana, S. Sendhilnathan. Phys. B 403, 2157 (2008). DOI: 10.1016/j.physb.2007.08.219
- Y.S. Gaiduk, E.V. Korobko, K.A. Shevtsova, D.A. Kotikov, I.A. Svito, A.E. Usenko, D.V. Ivashenko, A. Fahmy, V.V. Pankov. Kondensirovannye sredy i mezhfaznye granitsy, 22, 1, 28 (2020). (in Russian). DOI: https://doi.org/10.17308/kcmf.2020.22/2526
- H.L. Andersen, C. Granados-Miralles, M. Saura-Muzquiz, M. Stingaciu, J. Larsen, F. S ndergaard-Pedersen, J.V. Ahlburg, L. Keller, C. Frandsen, M. Christensen. Mater. Chem. Front. 3, 668 (2019). DOI: 10.1039/c9qm00012g
- H. Malik, A. Mahmood, K. Mahmood, M.Y. Lodhi, M.F. Warsib, I. Shakirc, H. Wahab, M. Asghar, M.A. Khan. Ceram. Int. 40, 9439 (2014). http://dx.doi.org/10.1016/j.ceramint.2014.02.015
- X.H. Li, C.L. Xu, X.H. Han, L. Qiao, T. Wang, F.S. Li. Nanoscale Res. Lett. 5, 1039 (2010)
- L. Neel. Ann. Phys. (Paris) 3, 137 (1948).
- Y. Yafet, C. Kittel. Phys. Rev. 87, 2, 290 (1952). DOI: 10.1103/physrev.87.290 10.1103/PhysRev.87.290
- S. Chikazumi. Physics of ferromagnetism. Oxford University Press, Oxford (1997). P. 502
- Applications of Mossbauer Spectroscopy. 1st ed. / Ed. R.L. Cohen. Elsevier (1980)
- V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience. Editura Academiei Romane, Bucharest (2013). V. 197
- M.I.A.A. Maksoud, A. El-Ghandour, G.S. El-Sayyad, R.A. Fahim, A.H. El-Hanbaly, M. Bekhit, E.K. Abdel-Khalek, H.H. El-Bahnasawy, M.A. Elkodous, A.H. Ashour, A.S. Awed. J Inorg. Organomet. Polym. Mater. 30, 3709 (2020). https://doi.org/10.1007/s10904-020-01523-8
- V. Sepelak, D. Baabe, F.J. Litterst, K.D. Becker. J. App. Phys. 88, 10, 5884 (2000). DOI: 10.1063/1.1316048
- G.A. Petitt, D.W. Forester. Phys. Rev. B 4, 11, 3912 (1971)
- A. Ghasemi, V. vSepelak, S.E. Shirsath, X. Liu, A. Morisako. J. Appl. Phys. 109, 07A512 (2011). DOI: 10.1063/1.3553777
- W. Bayoumi. J. Mater. Sci. 42, 8254 (2007). DOI: 10.1007/s10853-007-1616-8
- Q. Lin, J. Xu, F. Yang, J. Lin, H. Yang, Y. He. Mater. 11, 1799 (2018). DOI: 10.3390/ma11101799
- T. Tatarchuk, N. Paliychuk, M. Pacia, W. Kaspera, W. Macyk, A. Kotarba, B.F. Bogacz, A.T. Pedziwiatr, I. Mironyuk, R. Gargula, P. Kurzyd o, A. Shyichuk. New J. Chem. 43, 7, 3038 (2019). https://doi.org/10.1039/C8NJ05329D
- H.H. Joshi, P.B. Pandya, R.G. Kulkarni. Solid State Commun. 86, 12, 807 (1993)
- A. Bouhas, M. Amzal, B. Zouranen. Mater. Chem. Phys. 33, 1-2, 80 (1993). https://doi.org/10.1016/0254-0584(93)90094-3
- C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, I. Nakatani. Phys. Rev. B 63, 18, 184108 (2001)
- G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. Phys. Rev. 187, 1, 747 (1969)
- S.P. Yadav, S.S. Shinde, P. Bhatt, S.S. Meena, K.Y. Rajpure. J. Alloys Compd. 646, 550 (2015). http://dx.doi.org/10.1016/j.jallcom.2015.05.270
- E. Lima Jr., E. De Biasi, M.V. Mansilla, M.E. Saleta, F. Effenberg, L.M. Rossi, R. Cohen, H.R. Rechenberg, R.D. Zysler. J. App. Phys. 108, 103919 (2010). DOI: 10.1063/1.3514585
- S.C. Bhargava, P.K. Iyengar. Phys. Status Solidi B 53, 1, 359 (1972). https://doi.org/10.1002/pssb.2220530138
- A. Ramakrishna, N. Murali, T.W. Mammo, K. Samatha, V. Veeraiah. Phys. B: Condens. Matter. 534, 134 (2018). https://doi.org/10.1016/j.physb.2018.01.033
- T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V. Moklyak. J. Alloy. Compd. 694, 777 (2017). https://doi.org/10.1016/j.jallcom.2016.10.067
- M.M. Kothawale, R. Pednekar, U.B. Gawas, S.S. Meena, N. Prasad, S. Kumar. J. Supercond. Nov. Magn. 30, 2, 395 (2017)
- M. Hashim, S.S. Meena, R.K. Kotnala, S.E. Shirsath, P. Bhatt, S. Kumar, E. Senturk, R. Kumar, N. Gupta, Alimuddin. J. Magn. Magn. Mater. 360, 21 (2014). http://dx.doi.org/10.1016/j.jmmm.2014.01.047
- N. Velinov, E. Manova, T. Tsoncheva, C. Estournes, D. Paneva, K. Tenchev, V. Petkova, K. Koleva, B. Kunev, I. Mitov. Solid State Sci. 14, 1092 (2012). Doi.10.1016/j.solidstatesciences.2012.05.023
- R.S. de Biasi, L.H.G. Cardoso. Physica B 407, 18, 3893 (2012). http://dx.doi.org/10.1016/j.physb.2012.06.017
- J.Z. Msomi, W.B. Dlamini, T. Moyo, P. Ezekiel. J. Magn. Magn. Mater. 373, 68 (2015). DOI: 10.1016/j.jmmm.2014.01.044
- B.F. Bogacz, R. Gargula, P. Kurzyd o, A.T. Pedziwiatr, T. Tatarchuk, N. Paliychuk. Acta Phys. Polonica A 134, 5, 993 (2018)
- E. Wu, S.J. Campbell, W.A. Kaczmareka, M. Hofmann, S.J. Kennedy. Int. J. Mater. Res. 94, 10, 1127 (2003)
- J. Chappert, R.B. Frankel. Phys. Rev. Lett. 12, 570 (1967)
- A.S. Kamzin, V.G. Semenov, I.A. Al-Omari, V. Narayanaswamy, B. Issa. Phys. Solid State 65, 8, 1363 (2022). DOI: 10.61011/PSS.2023.08.56586.122
- I.S. Lyubutin, S.S. Starchikov, T.V. Bukreeva, I.A. Lysenko, S.N. Sulyanov, N.Y. Korotkov, S.S. Rumyantseva, I.V. Marchenko, K.O. Funtov, A.L. Vasiliev. Mater. Sci. Eng. C 45, 225 (2014). https://doi.org/10.1016/j.msec.2014.09.017
- I.S. Lyubutin, S.S. Starchikov, L. Chun-Rong, N.E. Gervits, N.Y. Korotkov, T.V. Bukreeva. Croat. Chem. Acta 88, 397 (2015). https://doi.org/10.5562/cca2739
- D. Kedem, T. Rothem. Phys. Rev. Lett. 18, 165 (1967)
- J.M.D. Coey. Phys. Rev. Lett. 27, 17, 1140 (1971)
- Mossbauer Spectroscopy Applied to Magnetism and Material Science / Eds G.J. Long, F. Grandjean. Plenum Press, N.Y. (1993). 479 p
- I.M. Obaidat, V. Mohite, B. Issa, N. Tit, Y. Haik. Cryst. Res. Tech. 44, 5, 489 (2009). DOI: 10.1002/crat.200900022
- L. Neel. J. Physique 15, 4, 225 (1954)
- A.S. Kamzin, L.A. Grigor'ev. JETP Lett. 57, 9, 557 (1993)
- A.S. Kamzin, L.A. Grigor'ev. ZETP 77, 4, 658 (1993)
- A.S. Kamzin, V.P. Rusakov, L.A. Grigoriev. Int. Conf. USSR. Proc. Part II, 271 (1988)
- A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. Lett. 6, 6, 417 (1990)
- A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. 35, 7, 840 (1990)
- F. Schaaf, U. Gonser. Hyperfine Interact. 57, 1-4, 2101 (1990)
- U. Gonzer, P. Schaaf, F. Aubertin. Hyperfine Interact. 66, 1-4, 95 (1991)
- A.S. Kamzin. JETP 89, 5, 891 (1999)
- A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. Phys. Solid State 41, 3, 433 (1999)
- A.S. Kamzin, V.L. Rozenbaum, L.P. Ol'khovik. JETP Lett. 67, 10, 843 (1998)
- A.S. Kamzin, L.P. Olkhovik. FTT 41, 10, 1806 (1999). (in Russian)
- A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. JETP 84, 4, 788 (1997)
- A.S. Kamzin, I.M. Obaidat, A.A. Valiullin, V.G. Semenov, I.A. Al-Omari. Phys. Solid State 62, 10, 1933 (2020). DOI: https://link.springer.com/article/10.1134/ S1063783420100157
- M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 1, 178 (2012)
- G.N. Konygin, O.M. Nemtsova, V.E. Porsev. Zhurn. prikl. spektroskopii 86, 3, 374 (2019). (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.