Significant noise current decrease in a terahertz photoconductive antenna-detector based on a strain-induced InAlAs/InGaAs superlattice
Lavrukhin D. V.1, Goncharov Yu. G.2, Khabibullin R. A.1,3, Zaytsev K. I.2, Ponomarev D. S.1,3
1 Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
3Bauman Moscow State Technical University, Moscow, Russia
Email: ponomarev_dmitr@mail.ru

PDF
We registered a significant decrease of the noise current of a photoconductive antenna (PCA), which is based on a strain-induced InAlAs/InGaAs superlattice with an ultrashort photocarrier lifetime due to a decrease in the focal spot size of a probe laser beam. We showed that the proposed PCA-detector exhibits merely a 1.5-fold increase of the noise current, while the THz power boost reaches a 10-fold magnitude. This feature can be used, in particular, to detect small THz signals. The PCA-detector shows a ~ 65 dB in its signal-to-noise ratio within 0.1-4.0 THz bandwidth. Keywords: Terahertz frequency, photoconductive antenna, THz detector, InGaAs/InAlAs superlattice.
  1. M. Koch, D. Mittleman, J. Ornik, E. Castro-Camus, Nat. Rev. Meth. Primers, 3, 48 (2023). DOI: 10.1038/s43586-023-00232-z
  2. P.U. Jepsen, R.H. Jacobsen, S.R. Keiding, J. Opt. Soc. Am. B, 13 (11), 2424 (1996). DOI: 10.1364/JOSAB.13.002424
  3. D.V. Lavrukhin, A.E. Yachmenev, Yu.G. Goncharov, K.I. Zaytsev, R.A. Khabibullin, A.M. Buryakov, E.D. Mishina, D.S. Ponomarev, IEEE Trans. Terahertz Sci. Technol., 11 (4), 417 (2021). DOI: 10.1109/TTHZ.2021.3079977
  4. N.T. Yardimci, D. Turan, M. Jarrahi, APL Photon., 6 (8), 080802 (2021). DOI: 10.1063/5.0055332
  5. A.V. Gorbatova, D.I. Khusyainov, A.E. Yachmenev, R.A. Khabibullin, D.S. Ponomarev, A.M. Buryakov, E.D. Mishina, Tech. Phys. Lett., 46 (11), 1111 (2020). DOI: 10.1134/S1063785020110218
  6. A.M. Buryakov, D.I. Khusyainov, E.D. Mishina, R.A. Khabibullin, A.E. Yachmenev, D.S. Ponomarev, Tech. Phys. Lett., 44 (12), 1115 (2018). DOI: 10.1134/S1063785018120192
  7. R.J.B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Gobel, M. Schell, Opt. Express, 22 (16), 19411 (2014). DOI: 10.1364/OE.22.019411
  8. A.E. Yachmenev, R.A. Khabibullin, D.S. Ponomarev, J. Phys. D: Appl. Phys., 55 (19), 193001 (2022). DOI: 10.1088/1361-6463/ac43dd
  9. D.S. Ponomarev, A. Gorodetsky, A.E. Yachmenev, S.S. Pushkarev, R.A. Khabibullin, M.M. Grekhov, K.I. Zaytsev, D.I. Khusyainov, A.M. Buryakov, E.D. Mishina, J. Appl. Phys., 125 (15), 151605 (2019). DOI: 10.1063/1.5079697
  10. N. Wang, M. Jarrahi, J. Infrared Millim. Terahertz Waves, 34 (9), 519 (2013). DOI: 10.1007/s10762-013-9995-1
  11. A. Gorodetsky, D.V. Lavrukhin, D.S. Ponomarev, S.V. Smirnov, A. Yadav, R.A. Khabibullin, E.U. Rafailov, IEEE J. Select. Topics Quant. Electron., 29 (5), 8500505 (2023). DOI: 10.1109/JSTQE.2023.3271830

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru