Puchikin A. V.
1, Panchenko Yu. N.
1,2, Andreev M. V.
2, Konovalov I. N.
1, Prokopiev V. E.
21Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
2Tomsk State University, Tomsk, Russia
Email: apuchikin@mail.ru, yu.n.panchenko@mail.ru, andreevmv_86@mail.ru, ivan@lgl.hcei.tsc.ru, prokop@ogl.hcei.tsc.ru
The results of a study of the temporal and spectral characteristics of the fluorescence of nitric oxide NO A2Σ obtained under dual-frequency laser action with nitrobenzene C6H5NO2 are presented. The physical mechanism for the appearance of fluorescence from the electronic level of NO A2Σ, v'(0), caused by two-photon excitation of the electronic transition NO A2Σ-X2, v'v'' (0,1) by laser radiation (472 nm) of femtosecond duration, is shown. In this case, vibrationally excited NO X2, v''(1) molecules appear as photofragments of nitrobenzene after interaction with laser radiation of a KrF-laser (248.3 nm) of nanosecond duration. It is noted that registration of the fluorescent signal for this experimental setup is observed at a femtosecond pulse intensity of ~300 GW/cm2. Keywords: photofragmentation, two-photon absorption, nitro compound, fluorescence.
- V.E. Privalov, V.G. Shemanin. Opt. Spectrosc., 130 (3), 331 (2022). DOI: 10.61011/EOS.2024.01.58283.6-24
- L.M. Narlagiri, M.S.S. Bharati, R. Beeram, D. Banerjee, V. Rao Soma. Trends Anal. Chem., 153, 116645 (2022). DOI:10.1016/j.trac.2022.116645
- D.D. Tuschel, A.V. Mikhonin, B.E. Lemoff, S.A. Asher. Appl. Spectrosc., 64 (4), 425-32 (2010). DOI: 10.1366/000370210791114194
- C.S. Cockell, J. Knowland. Biol. Rev. Camb. Philos. Soc., 74 (3), 311-45 (1999). DOI: 10.1017/s0006323199005356
- M.O. Rodgers, K. Asai, D.D. Davis. Appl. Opt., 19 (21), 3597 (1980). DOI: 10.1364/AO.19.003597
- T. Arusi-Parpar, D. Heflinger, R. Lavi. Appl. Opt., 40 (36), 6677 (2001). DOI: 10.1364/AO.40.006677
- C. M. Wynn, S. Palmacci, R.R. Kunz, K. Clow, M. Rothschild. Appl. Opt., 47 (31), 5767 (2008). DOI: 10.1364/AO.47.005767
- D. Wu, J.P. Singh, F.Y. Yueh, D.L. Monts. Appl. Opt., 35 (21), 3998 (1996). DOI: 10.1364/AO.35.003998
- S.M. Bobrovnikov, E.V. Gorlov, V.I. Zharkov, Yu.N. Panchenko, A.V. Puchikin. Appl. Opt., 57(31), 9381 (2018). DOI: 10.1364/AO.57.009381
- S.M. Bobrovnikov, E.V. Gorlov, V.I. Zharkov, Yu.N. Panchenko, A. Puchikin. Appl. Opt., 58(27), 7497 (2019). DOI: 10.1364/AO.58.007497
- M.-F. Lin, Y.T. Lee, C.-K. Ni, S. Xu, M.C. Lin. J. Chem. Phys., 126(6), 064310 (2007). DOI: 10.1063/1.2435351
- A.V. Puchikin, Yu.N. Panchenko, S.A. Yampolskaya, M.V. Andreev, V.E. Prokopiev. J. Lumin., 263, 120073 (2023). DOI: 10.1016/j.jlumin.2023.120073
- J. Viallon, S. Lee, P. Moussay, K. Tworek, M. Petersen, R.I. Wielgosz. Atm. Meas. Tech., 8 (3), 1245 (2015). DOI: 10.5194/amt-8-1245-2015
- K.A. Rahman, K.S. Patel, M.N. Slipchenko, T.R. Meyer, Zh. Zhang, Y. Wu, J.R. Gord, S. Roy. Appl. Opt., 57 (20), 5666 (2018). DOI: 10.1364/AO.57.005666
- J.B. Schmidt, S. Roy, W.D. Kulatilaka, I. Shkurenkov, I.V. Adamovich, W.R. Lempert, J.R. Gord. J. Phys. D, 50 (1), 015204 (2017). DOI: 10.1088/1361-6463/50/1/015204
- M. Hay, P. Parajuli, W.D. Kulatilaka. Proc. Combust. Inst., 39(1), 1435 (2023). DOI: 10.1016/j.proci.2022.08.090
- A.V. Puchikin, Yu.N. Panchenko, S.A. Yampolskaya, M.V. Andreev, V.E. Prokopiev. J. Lumin., 268, 120412 (2024). DOI: 10.1016/j.jlumin.2023.120412
- Y.N. Panchenko, A.V. Puchikin, S.A. Yampolskaya, S.M. Bobrovnikov, E.V. Gorlov, V. I. Zharkov. IEEE J. Quant. Electron., 57 (2), 1 (2021). DOI: 10.1109/JQE.2021.3049579
- Yu.I. Bychkov, A.G. Yastremskii, S.A. Yampolskaya, V.F. Losev, V. Dudarev, Yu.N. Panchenko, A.V. Puchikin. Russ. Phys. J., 57 (7), 929 (2014). DOI: 10.1007/s11182-014-0326-3
- S.A. Yampolskaya, A.G. Yastremskii, Yu.N. Panchenko, A.V. Puchikin, S.M. Bobrovnikov. IEEE J. Quant. Electron., 56 (2), 1500209 (2020). DOI: 10.1109/JQE.2020.2976532
- J. Luque, D.R. Crosley. LIFBASE: Database and Spectral Simulation Program (Version 1.5), SRI International Report MP 99-009 (1999). https://www.sri.com/engage/products-solutions/lifbase
- W.G. Bessler, C. Schulz, V. Sick, J.W. Daily. Proc. Third Joint Meeting US Sec. Combust. Inst., 105, 1 (2003). https://api.semanticscholar.org/CorpusID:92818989
- R.C. Reid, J.M. Prausnitz, T.K. Sherwood. The Properties of Gases \& Liquids (Chem. Eng. Series, McGraw-Hill, NY., 1977)
- L. Fr sig, O.J. Nielsen, M. Bilde, T.J. Wallington, J.J. Orlando, G.S. Tyndall. J. Phys. Chem. A, 104 (48), 11328 (2000). DOI: 10.1021/jp002696o
- C. Tanjaroon, C.J. Lue, S.W. Reeve, S.D. Allen, J.B. Johnson. Chem. Phys. Lett., 641, 33 (2015). DOI: 10.1016/j.cplett.2015.10.051
- Y.-M. Li, J.-L. Sun, H.-M. Yin, K.-L. Han, G.-Z. He. J. Chem. Phys., 118 (14), 6244 (2003). DOI: 10.1063/1.1557932
- D.B. Galloway, J.A. Bartz, L.G. Huey, F.F. Crim. J. Chem. Phys., 98(3), 2107 (1993). DOI: 10.1063/1.464188
- K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O.C. Fleischmann, A. Vogel, M. Hartmann, H. Bovensmann, J. Frerick, J.P. Burrows. J. Photochem. Photobiol. A, 157(2-3), 167 (2003). DOI: 10.1016/S1010-6030(03)00062-5
- R.M. Measures. Laser remote sensing: fundamentals and applications (Krieger, Melbourne, 1992)
- D.B. Galloway, T. Glenewinkel-Meyer, J.A. Bartz, L.G. Huey, F.F. Crim. J. Chem. Phys., 100 (3), 1946 (1994). DOI: 10.1063/1.466547
- L.A. Melton, W. Klemperer. Planet. Space Sci., 20(2), 157 (1972). DOI: 10.1016/0032-0633(72)90097-9
- A.B. Callear, M.J. Pilling. Trans. Faraday Soc., 66, 1618 (1970). DOI: 10.1039/TF9706601618
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.