Raman Stress microscopy induced by laser-stimulated diamond's microbreakdown
Pomazkin D.A. 1, Danilov P.A. 1, Kudryashov S.I. 1, Martovitsky V.P. 1, Matyaev I.D. 2, Vasilyev E.A. 3
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2Bauman Moscow State Technical University, Moscow, Russia
3St. Petersburg Mining University, St. Petersburg, Russia
Email: d.pomazkin@lebedev.ru

PDF
Induced stresses caused by laser optical breakdown in natural diamond bulk polished along the (331) plane by femtosecond (300 fs) laser pulses with various voltage have been studied. By the crossed polarizing filters, the zones of compression and tension of the affected area are visualized. Stress profiles were obtained using Raman spectroscopy, as well as dependence of the stress on the laser pulse energy at key points of the profiles. The result of profiling demonstrates that the slope in tension occurs faster than the raise in compression with increase of energy pumping. Keywords: diamond's optical breakdown, femtosecond laser pulses, Raman spectroscopy, tension stress, compression stress.
  1. D.A. Broadway, B.C. Johnson, M.S.J. Barson, S.E. Lillie, N. Dontschuk, D.J. McCloskey, A. Tsai, T. Teraji, D.A. Simpson, A. Stacey, J.C. McCallum, J.E. Bradby, M.W. Doherty, L.C.L. Hollenberg, J.P. Tetienne. Nano Lett., 19 (7), 4543 (2019). DOI: 10.1021/acs.nanolett.9b01402
  2. R.A. Khmelnitsky, V.A. Dravin, A.A. Tal, M.I. Latushko, A.A. Khomich, A.V. Khomich, A.S. Trushin, A.A. Alekseev, S.A. Terentiev. Nucl. Instr. Meth. Phys. Res. B, 304, 5 (2013). DOI: 10.1016/j.nimb.2013.03.030
  3. M.J. Turner, R. Trubko, J.M. Schloss, C.A. Hart, M. Wesson, D.R. Glenn, R.L. Walsworth. Phys. Rev. B, 100 (17), 174103 (2019). DOI: 10.1103/PhysRevB.100.174103
  4. A.A. Khomich, K.K. Ashikkalieva, A.P. Bolshakov, T.V. Kononenko, V.G. Ralchenko, V.I. Konov, P. Oliva, G. Conte, S. Salvatori. Diamond and Related Materials, 90, 84 (2018). DOI: 10.1016/j.diamond.2018.10.006
  5. M. Girolami, A. Bellucci, P. Calvani, S. Orlando, V. Valentini, D.M. Trucchi. Appl. Phys. A, 117 (1), 143 (2014). DOI: 10.1007/s00339-014-8310-x
  6. T.V. Kononenko, E.V. Zavedeev, V.V. Kononenko, K.K. Ashikkalieva, V.I. Konov. Appl. Phys. A, 119 (2), 405 (2015). DOI: 10.1007/s00339-015-9109-0
  7. S.S. Salvator, C.R. M.C. Ross, C.G. Cont, K.T. Kononenko, K.M. Komleno, K.A. Khomic, R.V. Ralchenk, K.V. Kono, P.G. Provata, J.M. Jaksi. IEEE Sensors J., 19 (24), 11908 (2019). DOI: 10.1109/JSEN.2019.2939618
  8. M.C. Rossi, S. Salvatori, G. Conte, T. Kononenko, V. Valentini. Opt. Mater., 96, 109214 (2019). DOI: 10.1016/j.optmat.2019.109214
  9. K.H. Chen, Y.L. Lai, J.C. Lin, K.J. Song, L.C. Chen, C.Y. Huang. Diamond and Related Materials, 4 (4), 460 (1995). DOI: 10.1016/0925-9635(94)05319-7
  10. E. Anastassakis. J. Appl. Phys., 86 (1), 249 (1999). DOI: 10.1063/1.370723
  11. A. C. Ferrari, J. Robertson. Phys. Rev. B, 61 (20), 14095 (1999). DOI: 10.1103/PhysRevB.61.14095
  12. A.C. Ferrari, J. Robertson. Phil. Trans. Roy. Soc. London A, 362 (1824), 2477 (2004). DOI: 10.1098/rsta.2004.1452
  13. H. Boppart, J.I. Silvera. Phys. Rev. B, 32, 1423 (1985). DOI: 10.1103/PhysRevB.32.1423
  14. G.K. Krasin, N.G. Stsepuro, V.P. Martovitsky, M.S. Kovalev. Opt. i spektr., 130 (4), 507 (2022). (in Russian) DOI: 10.61011/EOS.2024.01.58294.2-24

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru