Synthesis, structure and spectral properties of transparent glass-ceramics based on nanocrystals of zinc aluminate spinel doped with Ti3+ ions
Eremeev K. N.1, Dymshits O. S. 2,3, Alekseeva I. P.3, Khubetsov A. A.3, Tsenter M. Ya.3, Zapalova S. S.3, Basyrova L. R.1, Loiko P. A.1, Zhilin A.A.4
1Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP), UMR CEA-CNRS-ENSICAEN, Universite de Caen Normandie, Caen Cedex 4, France
2Ioffe Institute, St. Petersburg, Russia
3Vavilov State Optical Institute, St. Petersburg, Russia
4JSC Efremov Institute of Electrophysical Apparatus, St. Petersburg, Russia
Email: vodym@goi.ru

PDF
The structure and spectral properties of transparent glass-ceramics of the zinc aluminosilicate system containing titanium dioxide as a nucleating agent have been studied. The glass-ceramics were obtained by secondary heat-treatments of glass melted under reducing conditions and studied by differential scanning calorimetry, X-ray diffraction analysis, Raman spectroscopy, absorption and luminescence. The heat-treatments were carried out in the temperature range from 720 to 1050oC. According to the X-ray diffraction analysis, the main crystalline phase of glass-ceramics is zinc aluminate spinel (gahnite) with cubic structure and crystal size from 6 to 14 nm depending on the temperature of heat-treatment. At the temperature of 1000-1050oC crystals of TiO2 (rutile) also appear in glass-ceramics. The volume fraction of gahnite and rutile crystals and their sizes increase with increasing temperature of heat-treatment. The lattice parameter of gahnite nanocrystals changes from 8.083 to 8.120 Angstrem and its change occurs due to the incorporation of titanium ions. In glass-ceramics, broadband absorption in the visible and near-infrared spectral regions is observed due to the incorporation of Ti3+ ions into octahedral positions (positions of Al3+ ions) in the gahnite structure. According to Raman spectroscopy data, phase transformations in glass melted under reducing conditions are similar to those in glasses melted under oxidizing conditions, which indicates a small influence of Ti3+ ions on the processes of formation of glass-ceramics. Luminescence of the obtained materials is caused by superposition of luminescence of impurity Cr3+ ions and Ti3+ ions in octahedral positions in gahnite nanocrystals. The obtained regularities will be used in the development of glass-ceramics containing transition metal ions in lower oxidation states. Keywords: transparent glass-ceramics, nanocrystals, zinc aluminate spinel, titanium ions, structure, optical spectroscopy, X-ray diffraction analysis, Raman spectroscopy.
  1. L.E. Bausa, F. Jaque, J. Garcia Sole, A. Duran. J. Mater. Sci., 23, 1921 (1988). DOI: 10.1007/BF01115751
  2. L.E. Bausa, I. Vergara, J. Garci a-Sole, W. Strek, P.J. Deren. J. Appl. Phys., 68, 736 (1990). DOI: 10.1063/1.346807
  3. P.F. Moulton. OPN, 8, 9 (1982)
  4. P.F. Moulton. J. Opt. Soc. Am. B, 3, 125 (1986). DOI: 10.1364/JOSAB.3.000125
  5. A. Sanchez, R.E. Fahey, A.J. Strauss, R.L. Aggarwal. Opt. Lett., 11, 363 (1986). DOI: 10.1364/ol.11.000363
  6. P.W. Roth, A.J. Maclean, D. Burns, A.J. Kemp. Opt. Lett., 36, 304 (2011). DOI: 10.1364/OL.36.000304
  7. P.F. Moulton, J.G. Cederberg, K.T. Stevens, G. Foundos, M. Koselja, J. Preclikova. Opt. Mater. Express, 9 (5), 2216 (2019). DOI: 10.1364/OME.9.002216
  8. K. Morinaga, H. Yoshida, H. Takebe. J. Am. Ceram. Soc., 77, 3113 (1994). DOI: 10.1111/j.1151-2916.1994.tb04557.x
  9. N.A. El-Shafi, M.M. Morsi. J. Mater. Sci., 32, 5185 (1997). DOI: 10.1023/A:1018685904770
  10. L.H.C. Andrade, S.M. Lima, A. Novatski, A.M. Neto, A.C. Bento, M.L. Baesso, F.C.G. Gandra, Y. Guyot, G. Boulon. Phys. Rev. B, 78, 224202 (2008). DOI: 10.1103/PhysRevB.78.224202
  11. A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, G. Panczer, K. Kato, E. Hanamura. J. Mater. Res., 21, 2337 (2006). DOI: 10.1557/jmr.2006.0280
  12. A. Jouini, A. Yoshikawa, A. Brenier, T. Fukuda, G. Boulon. Phys. Stat. Sol. C, 4 (3), 1380 (2007). DOI: 10.1002/pssc.200673872
  13. N.J. van der Laag, M.D. Snel, P.C.M.M. Magusin, G. de With. J. Eur. Ceram., 24 (8), 2417 (2004). DOI: 10.1016/j.jeurceramsoc.2003.06.001
  14. R.A. Fregola, H. Skogby, F. Bosi, V. D'Ippolito, G.B. Andreozzi, U. H lenius. Am. Mineral., 99, 2187 (2014). DOI: 10.2138/am-2014-4962
  15. G. Lorenzi, G. Baldi, F. Di Benedetto, V. Faso, P. Lattanzi, M. Romanelli. J. Eur. Ceram. Soc., 26 (3), 317 (2006). DOI: 10.1016/j.jeurceramsoc.2004.10.027
  16. J. Popovic, E. Tkalvcec, B. Grvzeta, S. Kurajica, B. Rakvin. Am. Mineral., 94, 771 (2009). DOI: 10.2138/am.2009.3173
  17. M.T. Tsai, Y.S. Chang, Y.H. Chou, K.M. Tsai. J. Solid State Chem., 214, 86 (2014). DOI: 10.1016/j.jssc.2013.10.019
  18. P.J. Deren, D. Stefanska, M. Ptak, M. Maczka, W. Walerczyk, G. Banach. J. Am. Ceram. Soc., 97 (6), 1883 (2014). DOI: 10.1111/jace.12858
  19. I. Alekseeva, A. Baranov, O. Dymshits, V. Ermakov, V. Golubkov, M. Tsenter, A. Zhilin. J. Non-Cryst. Sol., 357, 3928 (2011). DOI: 10.1016/j.jnoncrysol.2011.08.011
  20. V.V. Golubkov, O.S. Dymshits, V.I. Petrov, A.V. Shashkin, M.Ya. Tsenter, A.A. Zhilin, U. Kang. J. Non-Cryst. Sol., 351, 711 (2005). DOI: 10.1016/j.jnoncrysol.2005.01.071
  21. K. Eremeev, O. Dymshits, I. Alekseeva, A. Khubetsov, S. Zapalova, M. Tsenter, L. Basyrova, P. Loiko, A. Zhilin, V. Popkov. J. Phys. Conf. Ser., 1697, 012125 (2020). DOI: 10.1088/1742-6596/1697/1/012125
  22. K. Eremeev, L. Basyrova, O. Dymshits, S. Balabanov, A. Belyaev, I. Alekseeva, A. Khubetsov, M. Tsenter, A. Volokitina, A. Zhilin, V. Popkov, P. Loiko. J. Phys.: Conf. Ser., 2086, 012138 (2021). DOI: 10.1088/1742-6596/2086/1/012138
  23. P. Scherrer, J. Abh. Akad. Wiss. Gott., Math.-Phys. Kl, 2, 98 (1918)
  24. V. Mohacek-Grosev, M. Vrankic, A. Maksimovic, V. Mandi. J. Alloys Compd., 697, 90 (2017). DOI: 10.1016/j.jallcom.2016.12.116
  25. I.P. Alekseeva, O.S. Dymshits, V.V. Golubkov, P.A. Loiko, M.Ya. Tsenter, K.V. Yumashev, S.S. Zapalova, A.A. Zhilin. J. Non-Cryst. Sol., 384, 73 (2014). DOI: 10.1016/j.jnoncrysol.2013.05.038
  26. A. Sanchez, A.J. Strauss, R.L. Aggarwal, R.E. Fahey. IEEE J. Quantum Electron., 24 (6), 1002 (1988). DOI: 10.1109/3.220
  27. A.S. Marfunin. Physics of minerals and inorganic materials: an introduction (Springer-Verlag, Berlin, Heidelberg, NY., 1979), 340 p
  28. B.M. Loeffler, R.G. Burns, J.A. Tossell, D.J. Vaughan, K.H. Johnson. Proceedings of the Fifth Lunar Conf., Supplement 5, Geochim. Cosmochim. Acta, 3, 3007 (1974)
  29. G.H. Faye, D.C. Harris. Can. Mineral., 10, 47 (1969)
  30. R.G. Burns. Ann. Rev. Earth Planet. Sci., 9, 345 (1981). DOI: 10.1146/annurev.ea.09.050181.002021
  31. H.St.C. O'Neill, W.A. Dollase. Phys. Chem. Miner., 20, 541 (1994). DOI: 10.1007/BF00211850
  32. R. Reisfeld, A. Kisilev, E. Greenberg, A. Buch, M. Ish-Shalom. Chem. Phys. Lett., 104, 153 (1984). DOI: 10.1016/0009-2614(84)80186-4
  33. P. Loiko, A. Belyaev, O. Dymshits, I. Evdokimov, V. Vitkin, K. Volkova, M. Tsenter, A. Volokitina, M. Baranov, E. Vilejshikova, A. Baranov, A. Zhilin. J. Alloys Compd., 725, 998 (2017). DOI: 10.1016/j.jallcom.2017.07.239
  34. G. Boulon. Mater. Chem. Phys., 16, 301 (1987). DOI: 10.1016/0254-0584(87)90104-0

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru