Synthesis, structure and spectral properties of transparent glass-ceramics based on nanocrystals of zinc aluminate spinel doped with Ti3+ ions
Eremeev K. N.1, Dymshits O. S. 2,3, Alekseeva I. P.3, Khubetsov A. A.3, Tsenter M. Ya.3, Zapalova S. S.3, Basyrova L. R.1, Loiko P. A.1, Zhilin A.A.4
1Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP), UMR CEA-CNRS-ENSICAEN, Universite de Caen Normandie, Caen Cedex 4, France
2Ioffe Institute, St. Petersburg, Russia
3Vavilov State Optical Institute, St. Petersburg, Russia
4JSC Efremov Institute of Electrophysical Apparatus, St. Petersburg, Russia
Email: vodym@goi.ru
The structure and spectral properties of transparent glass-ceramics of the zinc aluminosilicate system containing titanium dioxide as a nucleating agent have been studied. The glass-ceramics were obtained by secondary heat-treatments of glass melted under reducing conditions and studied by differential scanning calorimetry, X-ray diffraction analysis, Raman spectroscopy, absorption and luminescence. The heat-treatments were carried out in the temperature range from 720 to 1050oC. According to the X-ray diffraction analysis, the main crystalline phase of glass-ceramics is zinc aluminate spinel (gahnite) with cubic structure and crystal size from 6 to 14 nm depending on the temperature of heat-treatment. At the temperature of 1000-1050oC crystals of TiO2 (rutile) also appear in glass-ceramics. The volume fraction of gahnite and rutile crystals and their sizes increase with increasing temperature of heat-treatment. The lattice parameter of gahnite nanocrystals changes from 8.083 to 8.120 Angstrem and its change occurs due to the incorporation of titanium ions. In glass-ceramics, broadband absorption in the visible and near-infrared spectral regions is observed due to the incorporation of Ti3+ ions into octahedral positions (positions of Al3+ ions) in the gahnite structure. According to Raman spectroscopy data, phase transformations in glass melted under reducing conditions are similar to those in glasses melted under oxidizing conditions, which indicates a small influence of Ti3+ ions on the processes of formation of glass-ceramics. Luminescence of the obtained materials is caused by superposition of luminescence of impurity Cr3+ ions and Ti3+ ions in octahedral positions in gahnite nanocrystals. The obtained regularities will be used in the development of glass-ceramics containing transition metal ions in lower oxidation states. Keywords: transparent glass-ceramics, nanocrystals, zinc aluminate spinel, titanium ions, structure, optical spectroscopy, X-ray diffraction analysis, Raman spectroscopy.
- L.E. Bausa, F. Jaque, J. Garcia Sole, A. Duran. J. Mater. Sci., 23, 1921 (1988). DOI: 10.1007/BF01115751
- L.E. Bausa, I. Vergara, J. Garci a-Sole, W. Strek, P.J. Deren. J. Appl. Phys., 68, 736 (1990). DOI: 10.1063/1.346807
- P.F. Moulton. OPN, 8, 9 (1982)
- P.F. Moulton. J. Opt. Soc. Am. B, 3, 125 (1986). DOI: 10.1364/JOSAB.3.000125
- A. Sanchez, R.E. Fahey, A.J. Strauss, R.L. Aggarwal. Opt. Lett., 11, 363 (1986). DOI: 10.1364/ol.11.000363
- P.W. Roth, A.J. Maclean, D. Burns, A.J. Kemp. Opt. Lett., 36, 304 (2011). DOI: 10.1364/OL.36.000304
- P.F. Moulton, J.G. Cederberg, K.T. Stevens, G. Foundos, M. Koselja, J. Preclikova. Opt. Mater. Express, 9 (5), 2216 (2019). DOI: 10.1364/OME.9.002216
- K. Morinaga, H. Yoshida, H. Takebe. J. Am. Ceram. Soc., 77, 3113 (1994). DOI: 10.1111/j.1151-2916.1994.tb04557.x
- N.A. El-Shafi, M.M. Morsi. J. Mater. Sci., 32, 5185 (1997). DOI: 10.1023/A:1018685904770
- L.H.C. Andrade, S.M. Lima, A. Novatski, A.M. Neto, A.C. Bento, M.L. Baesso, F.C.G. Gandra, Y. Guyot, G. Boulon. Phys. Rev. B, 78, 224202 (2008). DOI: 10.1103/PhysRevB.78.224202
- A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, G. Panczer, K. Kato, E. Hanamura. J. Mater. Res., 21, 2337 (2006). DOI: 10.1557/jmr.2006.0280
- A. Jouini, A. Yoshikawa, A. Brenier, T. Fukuda, G. Boulon. Phys. Stat. Sol. C, 4 (3), 1380 (2007). DOI: 10.1002/pssc.200673872
- N.J. van der Laag, M.D. Snel, P.C.M.M. Magusin, G. de With. J. Eur. Ceram., 24 (8), 2417 (2004). DOI: 10.1016/j.jeurceramsoc.2003.06.001
- R.A. Fregola, H. Skogby, F. Bosi, V. D'Ippolito, G.B. Andreozzi, U. H lenius. Am. Mineral., 99, 2187 (2014). DOI: 10.2138/am-2014-4962
- G. Lorenzi, G. Baldi, F. Di Benedetto, V. Faso, P. Lattanzi, M. Romanelli. J. Eur. Ceram. Soc., 26 (3), 317 (2006). DOI: 10.1016/j.jeurceramsoc.2004.10.027
- J. Popovic, E. Tkalvcec, B. Grvzeta, S. Kurajica, B. Rakvin. Am. Mineral., 94, 771 (2009). DOI: 10.2138/am.2009.3173
- M.T. Tsai, Y.S. Chang, Y.H. Chou, K.M. Tsai. J. Solid State Chem., 214, 86 (2014). DOI: 10.1016/j.jssc.2013.10.019
- P.J. Deren, D. Stefanska, M. Ptak, M. Maczka, W. Walerczyk, G. Banach. J. Am. Ceram. Soc., 97 (6), 1883 (2014). DOI: 10.1111/jace.12858
- I. Alekseeva, A. Baranov, O. Dymshits, V. Ermakov, V. Golubkov, M. Tsenter, A. Zhilin. J. Non-Cryst. Sol., 357, 3928 (2011). DOI: 10.1016/j.jnoncrysol.2011.08.011
- V.V. Golubkov, O.S. Dymshits, V.I. Petrov, A.V. Shashkin, M.Ya. Tsenter, A.A. Zhilin, U. Kang. J. Non-Cryst. Sol., 351, 711 (2005). DOI: 10.1016/j.jnoncrysol.2005.01.071
- K. Eremeev, O. Dymshits, I. Alekseeva, A. Khubetsov, S. Zapalova, M. Tsenter, L. Basyrova, P. Loiko, A. Zhilin, V. Popkov. J. Phys. Conf. Ser., 1697, 012125 (2020). DOI: 10.1088/1742-6596/1697/1/012125
- K. Eremeev, L. Basyrova, O. Dymshits, S. Balabanov, A. Belyaev, I. Alekseeva, A. Khubetsov, M. Tsenter, A. Volokitina, A. Zhilin, V. Popkov, P. Loiko. J. Phys.: Conf. Ser., 2086, 012138 (2021). DOI: 10.1088/1742-6596/2086/1/012138
- P. Scherrer, J. Abh. Akad. Wiss. Gott., Math.-Phys. Kl, 2, 98 (1918)
- V. Mohacek-Grosev, M. Vrankic, A. Maksimovic, V. Mandi. J. Alloys Compd., 697, 90 (2017). DOI: 10.1016/j.jallcom.2016.12.116
- I.P. Alekseeva, O.S. Dymshits, V.V. Golubkov, P.A. Loiko, M.Ya. Tsenter, K.V. Yumashev, S.S. Zapalova, A.A. Zhilin. J. Non-Cryst. Sol., 384, 73 (2014). DOI: 10.1016/j.jnoncrysol.2013.05.038
- A. Sanchez, A.J. Strauss, R.L. Aggarwal, R.E. Fahey. IEEE J. Quantum Electron., 24 (6), 1002 (1988). DOI: 10.1109/3.220
- A.S. Marfunin. Physics of minerals and inorganic materials: an introduction (Springer-Verlag, Berlin, Heidelberg, NY., 1979), 340 p
- B.M. Loeffler, R.G. Burns, J.A. Tossell, D.J. Vaughan, K.H. Johnson. Proceedings of the Fifth Lunar Conf., Supplement 5, Geochim. Cosmochim. Acta, 3, 3007 (1974)
- G.H. Faye, D.C. Harris. Can. Mineral., 10, 47 (1969)
- R.G. Burns. Ann. Rev. Earth Planet. Sci., 9, 345 (1981). DOI: 10.1146/annurev.ea.09.050181.002021
- H.St.C. O'Neill, W.A. Dollase. Phys. Chem. Miner., 20, 541 (1994). DOI: 10.1007/BF00211850
- R. Reisfeld, A. Kisilev, E. Greenberg, A. Buch, M. Ish-Shalom. Chem. Phys. Lett., 104, 153 (1984). DOI: 10.1016/0009-2614(84)80186-4
- P. Loiko, A. Belyaev, O. Dymshits, I. Evdokimov, V. Vitkin, K. Volkova, M. Tsenter, A. Volokitina, M. Baranov, E. Vilejshikova, A. Baranov, A. Zhilin. J. Alloys Compd., 725, 998 (2017). DOI: 10.1016/j.jallcom.2017.07.239
- G. Boulon. Mater. Chem. Phys., 16, 301 (1987). DOI: 10.1016/0254-0584(87)90104-0
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.