Effect of deformation on the radiation formation of interlayer bridges in bilayer graphene
Podlivaev A. I.1,2
1National Research Nuclear University “MEPhI”, Moscow, Russia
2Research Institute of Problems in the Development of Scientific and Educational Potential of Young People, Moscow, Russia
Email: AIPodlivayev@mephi.ru
Within the framework of the non-orthogonal tight-binding model, the influence of uniform stretching of bilayer graphene on the process of radiation formation of interlayer bridges in this structure was studied. Model calculations have shown that stretching bilayer graphene by 5% increases the total probability of the formation of defects of all types by ~2 times. It is shown that the proportion of structures with interlayer bridges that have sufficient thermal stability for long-term existence at room temperature does not depend on deformation. In deformed and undeformed bilayer graphene, this fraction is ~15%. One of the found stable structures with an interlayer bridge is a type of Frenkel pair and has an annealing activation energy of 2.11 eV. In earlier work, when simulating the irradiation of undeformed bilayer graphene within a similar model, this defect was not observed Keywords: Bilayer graphene, radiation defects, interlayer bridges, deformation, molecular dynamics.
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science 306, 666 (2004)
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov. Nature 438, 197 (2005)
- A.E. Galashev, O.R. Rakhmanova. UFN, 184 1045, (2014). (in Russian)
- K.A. Krylova, L.R. Safina, R.T. Murzaev, S.A. Shcherbinin, Yu.A. baimova, R.R. Mulyukov. FTT, 65 1579 (2023). (in Russian)
- K.G. Mikheev, R.G. Zonov, N.V. Chuchkalov, G.M. Mikheev. FTT 66, 280 (2024). (in Russian)
- S.Yu. Davydov, FTT 66, 306 (2024). (in Russian)
- S.Yu. Davydov, A.A. Lebedev, FTT, 65 2048 (2023). (in Russian)
- K.G. Mikheev, A.V. Syugaev, R.G. Zonov, D.L. Bulatov, G.M. Mikheev. FTT, 65 353 (2023). (in Russian)
- X. Liu, M.C. Hersam. Sci. Adv. 5 (2019). https://doi.org/10.1126/sciadv.aax6444
- A.I. Kochaev, K.P. Katin, M.M. Maslov, R.M. Meftakhutdinov. J. Phys. Chem. Lett. 11, 5668 (2020)
- A.I. Kochaev, M.M. Maslov, K.P. Katin, V. Efimov, I. Efimova. Mater. Today Nano. 20, 100247 (2022)
- L.A. Chernozatonsky, P.B. Sorokin, A.G. Kvashnin, D.G. Kvashnin. Pisma v ZhETF 90, 144 (2009). (in Russian)
- P.V. Bakharev, M. Huang, M. Saxena, S.W. Lee, S.H. Joo, S.O. Park, J. Dong, D.C. Camacho-Mojica, S. Jin, Y. Kwon, M. Biswal, F. Ding, S.K. Kwak, Z. Lee, R.S. Ruoff. Nature Nanotechnol. 15, 59 (2019)
- L.A. Chernozatonskii, K.P. Katin, V.A. Demin, M.M. Maslov. Appl. Surf. Sci. 537, 148011 (2021)
- T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg. Science 313, 951 (2006)
- Y. Zhang, T. Tang, C. Girit. Nature 459, 820 (2009)
- G. Fiori, G. Iannaccone. IEEE Electron Device Lett. 30, 261 (2009)
- M.-C. Chen, C.-L. Hsu, T.-J. Hsueh. IEEE Electron Device Lett. 35, 590 (2014)
- Y. Tang, Z. Liu, Z. Shen. Sens. Actuators B 238, 182 (2017)
- S.Yu. Davydov, FTT 66, 2050 (2022). (in Russian)
- V.A. Demin, D.G. Kvashnin, P. Vancho, G. Mark, L.A. Tchernozatonsky. Pis'ma v ZhETF, 112 328 (2020). (in Russian)
- A.I. Podlivaev. Pis'ma v ZhETF, 117 (456) 2023 (1970). (in Russian)
- M.M. Maslov, A.I. Podlivaev, K.P. Katin. Mol. Simulation 42, 305 (2016)
- A.I. Podlivaev, K.S. Grishakov, K.P. Katin, M.M. Maslov. Pis'ma v ZhETF, 113 (182), 2021 (2021). (in Russian)
- K.P. Katin, K.S. Grishakov, A.I. Podlivaev, M.M. Maslov. J. Chem. Theory Comput. 16, 2065 (2020)
- K.P. Katin, M.M. Maslov. J. Phys. Chem. Solids 108, 82 (2017)
- L.A. Openov, A.I. Podlivaev. Pisma v ZTEF, 109, 746 (2019). (in Russian)
- A.I. Podlivaev, K.S. Grishakov, K.P. Katin, M.M. Maslov. Pis'ma v ZhETF, 113 182 (2021). (in Russian)
- A.I. Podlivaev, K.S. Grishakov, K.P. Katin, M.M. Maslov. Pis'ma v ZhETF, 114 172 (2021). (in Russian)
- A.I. Podlivaev. Pis'ma v ZhETF, 115 384 (2022)
- K.P. Katin, M.M. Maslov. Mol. Simulation 44, 703 (2018)
- L.A. Openov, A.I. Podlivaev. FTT 57, 1450 (2015). (in Russian)
- A.I. Podlivaev, L.A. Openov. FTT 61, 604 (2019). (in Russian)
- A.I. Podlivaev. Pis'ma v ZhETF, 111 (728) 2020). (in Russian)
- E.M. Pearson, T. Halicioglu, W.A. Tiller. Phys. Rev. A 32, 3030 (1985)
- K.P. Katin, A.I. Podlivaev, A.I. Kochaev, P.A. Kulyamin, Y. Bauetdinov, A.A. Grekova, I.V. Bereznitskiy, Mikhail M. Maslov. Flat Chem., 44, 100622 (2024). https://doi.org/10.1016/j.flatc.2024
- G.V. Vineyard. J. Phys. Chem. Solids. 3, 121 (1957)
- A.A. El-Barbary. Appl. Surf. Sci. 426, 238 (2017)
- S.B. Isbill, A.E. Shields, D.J. Mattei-Lopez, R.J. Kapsimalis, J.L. Niedziela. Comput. Mater. Sci. 195, 110477 (2021)
- C.P. Ewels, R.H. Telling, A.A. El-Barbary, M.I. Heggieand P.R. Briddon. Phys. Rev. Lett. 91, 025505 (2003).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.