Processing of thermoelectric converter data considering substrate material properties
This paper introduces a comprehensive mathematical model for a gradient heat flux sensor, which accounts for substrate properties, and explores the influence of substrate parameters on sensor performance. Through a comparative analysis, we juxtapose this model with an alternative data processing approach that disregards substrate properties and assumes zero heat flux on the rear side. Our investigation exposes a substantial dependence of the collected data on the thermophysical attributes of the substrate. Additionally, experimental data acquired from the sensor, measuring heat flux density from a known source, undergo processing using the proposed model to assess its effectiveness. Keywords: gradient heat flux sensor, thermometry, signal processing technique.
- A.M. Kharitonov. Tekhnika i metody aerofizicheskogo eksperimenta. Ch. 2. Metody i sredstva aerofizicheskikh izmerenij: ucgebnik (Izd-vo HGTU, Novosibirsk, 2007), 455 c. (in Russian)
- A.G. Samoylovich. Termoelektricheskie i termomagnitnye metody prevrashcheniya energii (Izdatel'stvo LKI, M., 2007), 224 s. (in Russian)
- S.V. Bobashev, Yu.P. Golovachev, N.P. Mende, P.A. Popov, B.I. Reznikov, V.A. Sakharov, A.A. Schmidt, A.S. Chernyshev, S.Z. Sapozhnikov, V.Yu. Mityakov, A.V. Mityakov. ZhTF, 78 (12), 103 (2008). (in Russian)
- O.M. Alifanov, S.A. Budnik, A.V. Morzhukhina, A.V. Nenarokomov, A.V. Netelev, D.M. Titov. J. Engineeri. Phys. Thermophys., 91, 26 (2018). DOI: 10.1007/s10891-018-1716-0
- P. Kennedy, J. Donbar, J. Trelewicz, Ch. Gouldstone, J. Longtin. 17th AIAA Intern. Space Planes and Hypersonic Systems and Technol. Conf., (11-14 April 2011, San Francisco, California), DOI: 10.2514/6.2011-2330
- T. Roediger, H. Knauss, U. Gaisbauer, E. Kraemer, S. Jenkins, J. von Wolfersdorf. J. Turbomach., 130 (1), 011018 (2008). https://doi.org/10.1115/1.2751141
- M. Collins, K. Chana, T. Povey. Meas. Sci. Technol., 26 (2), 025303 (2015). DOI: 10.1088/0957-0233/26/2/025303
- Zh. Liu, S. Liu, J. Zhao, Ya. Yue, Q. Xu, F. Yang. Measurement, 198, 111419 (2022). DOI.org/10.1016/j.measurement.2022.111419
- H. Knauss, T. Roediger, D.A. Bountin, B.V. Smorodsky, A.A. Maslov, J. Srulijes. J. Spacecraft and Rockets, 46 (2), 255 (2009)
- S.Z. Sapozhnikov, V.YU. Mityakov, A.V. Mityakov. Gradientnye datchiki teplovogo potoka (Izd-vo SPbGPU, SPb., 2003), 168 s. (in Russian)
- S.V. Bobashev, N.P. Mende, P.A. Popov, B.I. Reznikov, V.A. Sakharov, S.Z. Sapozhnikov, V.Yu. Mityakov, A.V. Mityakov, D.A. Buntin, A.A. Maslov, H. Knauss, T. Rediger. Pis'ma v ZhTF, 35 (5), 36 (2009). (in Russian)
- P.A. Popov, S.V. Bobashev, B.I. Reznikov, V.A. Sakharov. Tech. Phys. Lett., 44 (4), 316 (2018)
- Yu.V. Dobrov, V.A. Lashkov, I.Ch. Mashek, A.V. Mityakov, V.Yu. Mityakov, S.Z. Sapozhnikov, R.S. Khoronzhuk. ZhTF, 91 (2), 240 (2021). (in Russian). DOI: 10.21883/JTF.2021.02.50357.209-20
- P.A. Popov, S.V. Bobashev, B.I. Reznikov, V.A. Sakharov. Pis'ma v ZhTF 43, 7, (2017) (in Russian)
- J.E. Doorly, M.L.G. Oldfield. Intern. J. Heat and Mass Transfer, 30 (6), 1159 (1987). DOI: 10.1016/0017-9310(87)90045-7
- A.V. Lykov. Teoriya teploprovodnosti (Vysshaya Shkola, M., 1967), 600 s. (in Russian)
- Naucho-tekhnicheskij tsentr "Ekspert" (nerazrushayuschij kontrol'), Koeffitsient izlucheniya (stepen' chernoty) razlichnykh materialov. (in Russian) https://ntcexpert.ru/cg/57-acenter/teplovoj-kontrol/797-kojefficient-izluchenija-razlichnyh-materialov
- Metrologiya teplofizicheskogo eksperimenta, pod red. prof. S.Z. Sapozhkova (Izd-vo Politekhnicheskogo un-ta, SPb., 2017) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.