Collisions of liquid droplets and solid particles in a heated gaseous medium
Islamova A. G.1, Tkachenko P. P.1, Shlegel N. E.1, Strizhak P. A.1
1Tomsk Polytechnic University, Tomsk, Russia
Email: agi2@tpu.ru

PDF
The paper presents experimental data on the characteristics of collisions between water suspension droplets and sand particles in a gaseous medium at different initial temperatures. Typical interaction modes (agglomeration, separation) were established. The interaction mode map has been drawn taking into account simultaneous contributions of the inertia, surface tension, and viscosity forces. There were determined conditions for intense fragmentation of liquid droplets, as well as for stable agglomeration of droplets and particles during which suspension droplets get formed. The study has shown that an increase in the temperature of the gaseous medium from 20 to Fx0xEC leads to a 30% shift of the boundary between the agglomeration and separation modes towards lower Weber numbers. This was assumed to occur because of changes in the liquids physical properties (viscosity decrease by 30%, surface tension decrease by up to 10%). Keywords: collision, agglomeration, separation, particle, droplet.
  1. Yu.D. Chashechkin, V.E. Prokhorov, Tech. Phys., 68 (11), 1431 (2023)
  2. S. Suo, M. Jia, H. Liu, T. Wang, Int. J. Multiphase Flow, 137, 103581 (2021). DOI: 10.1016/j.ijmultiphaseflow.2021.103581
  3. H. Kan, H. Nakamura, S. Watano, Adv. Powder Technol., 29, 1317 (2018). DOI: 10.1016/j.apt.2018.02.026
  4. G.V. Kuznetsov, P.A. Strizhak, Tech. Phys. Lett., 45 (3), 267 (2019). DOI: 10.1134/S1063785019030301
  5. D. Pan, N. Phan-Thien, B.C. Khoo, J. Non-Newton. Fluid Mech., 212, 63 (2014). DOI: 10.1016/j.jnnfm.2014.08.011
  6. H. Yang, A. Chen, S. Geng, J. Cheng, F. Gao, Q. Huang, C. Yang, Chin. J. Chem. Eng., 44, 51 (2022). DOI: 10.1016/j.cjche.2021.03.045
  7. I. Malgarinos, N. Nikolopoulos, M. Gavaises, Fuel Process. Technol., 156, 317 (2017). DOI: 10.1016/J.FUPROC.2016.09.014
  8. N.M. Eijkelboom, A.P. van Boven, I. Siemons, P.F.C. Wilms, R.M. Boom, R. Kohlus, M.A.I. Schutyser, J. Food Eng., 337, 111222 (2023). DOI: 10.1016/j.jfoodeng.2022.111222
  9. V.A. Arkhipov, S.A. Basalaev, A.I. Konovalenko, K.G. Perfil'eva, Tech. Phys. Lett., 46 (6), 610 (2020). DOI: 10.1134/S1063785020060176
  10. Handbook of non-ferrous metal powders, ed. by O.D. Neikov, S.S. Naboychenko, N.A. Yefimov (Elsevier, Oxford, 2019), p. 621. DOI: 10.1016/B978-0-08-100543-9.00014-2
  11. S.K. Pawar, F. Henrikson, G. Finotello, J.T. Padding, N.G. Deen, A. Jongsma, F. Innings, J.A.M.H. Kuipers, Powder Technol., 300, 157 (2016). DOI: 10.1016/j.powtec.2016.06.005
  12. A.V. Demidovich, S.S. Kralinova, P.P. Tkachenko, N.E. Shlegel, R.S. Volkov, Energies, 12, 4256 (2019). DOI: 10.3390/en12224256

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru