Increasing the efficiency of converting the energy of a high-voltage pulse into the energy of a microwave pulse of a nonlinear transmission line in a scheme with its reuse for exciting high-frequency oscillations
Konev V. Yu.
1, Priputnev P. V.
1, Sobyanin R. K.
1, Romanchenko I. V.
1, Vykhodtsev P.V.
11Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
Email: konev@lnes.hcei.tsc.ru, ppv@lnes.hcei.tsc.ru, sobjanin@lnes.hcei.tsc.ru, pasha@lfe.hcei.tsc.ru
A method has been implemented for generating two microwave-radiation pulses by using saturated-ferrite-based nonlinear transmission lines (NLTLs) sequentially excited by a single high-voltage pulse. Using the energy of a single video pulse to excite oscillations in two NLTLs allows increasing up to twice the efficiency of converting its energy into energy of high-frequency oscillations. This generation technique can provide emission of a sequence of microwave pulses with repetition rate of tens of MHz. Keywords: nonlinear transmission lines, microwave pulse sequence, high efficiency, high pulse repetition rate.
- J. Benford, J.A. Swegle, E. Schamiloglu, High power microwaves (Taylor \& Francis Group, Oxford, 2016)
- J. Krile, M. Kristiansen, in 2011 IEEE Pulsed Power Conf. (IEEE, 2011), p. 679--683. DOI: 10.1109/PPC.2011.6191562
- M. Fuks, E. Shamiloglu, Phys. Rev. Lett., 95 (20), 205101 (2005). DOI: 10.1103/PhysRevLett.95.205101
- E.M. Totmeninov, V.Yu. Konev, A.I. Klimov, I.V. Pegel, JETP Lett., 115 (8), 444 (2022). DOI: 10.1134/S0021364022100356
- V.P. Gubanov, A.V. Gunin, O.B. Koval'chuk, V.O. Kutenkov, I.V. Romanchenko, V.V. Rostov, Tech. Phys. Lett., 35 (7), 626 (2009). DOI: 10.1134/S1063785009070116
- V.M. Efanov, M.V. Efanov, A.V. Kricklenko, P.V. Yarin, in 28th Int. Conf. on phenomena in ionized gases (ICPIG) (Prague, Czech Republic, 2007), p. 1515
- Yu.A. Andreev, A.M. Efremov, V.I. Koshelev, B.M. Kovalchuk, A.A. Petkun, K.N. Sukhushin, M.Yu. Zorkaltseva, Rev. Sci. Instrum., 85 (10), 104703 (2014). DOI: 10.1063/1.4897167
- P.V. Priputnev, I.V. Romanchenko, S.N. Maltsev, V.Yu. Konev, V.P. Tarakanov, IEEE Microwave Wireless Comp. Lett., 32 (5), 471 (2022). DOI: 10.1109/LMWC.2021.3138964
- P.V. Priputnev, R.K. Sobyanin, S.N. Maltsev, V.Yu. Konev, I.V. Romanchenko, in 2023 IEEE 24th Int. Conf. of young professionals in electron devices and materials (EDM) (IEEE, 2023), p. 730--733. DOI: 10.1109/EDM58354.2023.10225026
- I.V. Romanchenko, V.V. Rostov, Tech. Phys., 55 (7), 1024 (2010). DOI: 10.1134/S1063784210070170
- M.R. Ulmaskulov, S.A. Shunailov, J. Appl. Phys., 130 (23), 234905 (2021). DOI: 10.1063/5.0072352
- J.O. Rossi, F.S. Yamasaki, J.J. Barroso, A.F. Greco, E.G.L. Rangel, A.F. Teixeira, L.P.S. Neto, E. Schamiloglu, Rev. Sci. Instrum., 93 (2), 024704 (2022). DOI: 10.1063/5.0067931
- J. Bragg, J. Dickens, A. Neuber, J. Appl. Phys., 113 (6), 064904 (2013). DOI: 10.1063/1.4792214
- P. Priputnev, I. Romanchenko, S. Maltsev, R. Sobyanin, V. Konev, Rev. Sci. Instrum., 94 (5), 054708 (2023). DOI: 10.1063/5.0144386
- M.R. Ulmaskulov, S.A. Shunailov, A. Oganesyan, L. Ovchinnikova, IEEE Microwave Wireless Technol. Lett., 33 (8), 1147 (2023). DOI: 10.1109/LMWT.2023.3276479
- G.A. Mesyats, S.D. Korovin, A.V. Gunin, V.P. Gubanov, A.S. Stepchenko, D.M. Grishin, V.F. Landl, P.I. Alekseenko, Laser Particle Beams, 21 (2), 197 (2003). DOI: 10.1017/S0263034603212015
- V.Yu. Konev, A.I. Klimov, P.V. Priputnev, R.K. Sobyanin, V.V. Barmin, S.N. Maltsev, in 2023 IEEE 24th Int.Conf. of young professionals in electron devices and materials (EDM) (IEEE, 2023), p. 640--644. DOI: 10.1109/EDM58354.2023.10225048
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.