Sub-wavelength resolution terahertz polarization-sensitive microscopy based on solid immersion effect
Il’enkova D. R.1, Rybnikov D. D.1, Zhelnov V.A. 1, Alekseeva A.I. 2, Shikunov S.L. 3, Kaledin A. V. 3, Polshina V. I. 4, Nebezhev A.A.4, Reshetov I. V.4, Zaytsev K. I. 1, Chernomyrdin N. V. 1
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Research Institute of Human Morphology, Moscow, Russia
3Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
4I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: iljenckowa.darya@yandex.ru

PDF
Terahertz (THz) technologies have many applications in medical diagnostics and therapy. Most are based on effective medium theory, which assumes that biological tissues are optically isotropic and homogeneous over the scales determined by THz wavelengths. Meanwhile, recent studies have shown the possibility of visualizing mesoscale (~λ) tissue inhomogeneities using THz microscopy methods, where λ is the wavelength. In this regard, the problem arises of studying the corresponding effects of scattering and polarization of THz radiation during interaction with biological tissues, for which there are no suitable tools. To solve this problem, a polarization-sensitive reflection-mode THz microscope based on the solid immersion effect has been developed. It uses a silicon hemispherical immersion lens, a metal wire mesh polarizer and analyzer, a backward wave oscillator as a continuous wave source at 0.6 THz (λ=500 μm) and a Golay detector. This system makes it possible to study the local polarization-dependent THz response of mesoscale structural elements of tissues with a resolution of up to 0.15λ. Using the developed method, THz images of test media were obtained for two orthogonal states of polarization of incident THz radiation, which made it possible to identify their THz birefringence (structural optical anisotropy). The structural anisotropy of the THz response of porous biomorphic silicon carbide ceramics is considered. Refractive index distributions of freshly excised rat brain were obtained, where the most pronounced THz birefringence is observed in the Corpus callosum, formed by oriented and densely packed axons connecting the cerebral hemispheres. The obtained results show the perspectives of applying THz polarization-sensitive microscopy in biophotonics and medical imaging. Keywords: terahertz radiation, terahertz microscopy, solid immersion effect, polarization-sensitive microscopy, super-resolution, birefringence, optical anisotropy, brain tissue, Corpus callosum.
  1. H. Guerboukha, K. Nallappan, M. Skorobogatiy. Adv. Opt. Photon., 10 (4), 843?938 (2018). DOI: 10.1364/AOP.10.000843
  2. N.V. Chernomyrdin, M. Skorobogatiy, D.S. Ponomarev, V.V. Bukin, V.V. Tuchin, K.I. Zaytsev. Appl. Phys. Lett., 120 (11), 110501 (2022). DOI: 10.1063/5.0085906
  3. O.A. Smolyanskaya, N.V. Chernomyrdin, A.A. Konovko, K.I. Zaytsev, I.A. Ozheredov, O.P. Cherkasova, M.M. Nazarov, J.-P. Guillet, S.A. Kozlov, Yu. V Kistenev, J.-L. Coutaz, P. Mounaix, V.L. Vaks, J.-H. Son, H. Cheon, V.P. Wallace, Yu. Feldman, I. Popov, A.N. Yaroslavsky, A.P. Shkurinov, V.V. Tuchin. Prog. Quantum. Electron., 62, 1-77 (2018). DOI: 10.1016/j.pquantelec.2018.10.001
  4. Z. Yan, L.-G. Zhu, K. Meng, W. Huang, Q. Shi. Trends Biotechnol, 40 (7), 816-830 (2022). DOI: 10.1016/j.tibtech.2021.12.002
  5. K. Zaytsev, I. Dolganova, N. Chernomyrdin, G. Katyba, A. Gavdush, O. Cherkasova, G. Komandin, M. Shchedrina, A. Khodan, D. Ponomarev, I. Reshetov, V.E. Karasik, M. Skorobogatiy, V. Kurlov, V. Tuchin. J. Opt., 22, 13001 (2020). DOI: 10.1088/2040-8986/ab4dc3
  6. H. Lindley-Hatcher, R.I. Stantchev, X. Chen, A.I. Hernandez-Serrano, J. Hardwicke, E. Pickwell-MacPherson. Appl. Phys. Lett., 118 (23), 230501 (2021). DOI: 10.1063/5.0055259
  7. G.G. Hernandez-Cardoso, L.F. Amador-Medina, G. Gutierrez-Torres, E.S. Reyes-Reyes, C.A.B. Marti nez, C.C. Espinoza, J.A. Cruz, I. Salas-Gutierrez, B.O. Murillo-Ortiz, E. Castro-Camus. Sci. Rep., 12, 3110 (2022). DOI: 10.1038/s41598-022-06996-w
  8. H. Zhao, Y. Wang, L. Chen, J. Shi, K. Ma, L. Tang, D. Xu, J. Yao, H. Feng, T. Chen. J. Biomed. Opt., 23 (3), 36015 (2018). DOI: 10.1117/1.JBO.23.3.036015
  9. N. Bajwa, S. Sung, D.B. Ennis, M.C. Fishbein, B.N. Nowroozi, D. Ruan, A. Maccabi, J. Alger, M.A.St. John, W.S. Grundfest, Z.D. Taylor. IEEE Trans. Biomed. Eng., 64 (11), 2682-2694 (2017). DOI: 10.1109/TBME.2017.2658439
  10. N. Bajwa, J. Au, R. Jarrahy, S. Sung, M. Fishbein, D. Riopelle, D. Ennis, T. Aghaloo, M. John, W. Grundfest, Z. Taylor. Biomed. Opt. Express, 8, 460 (2017). DOI: 10.1364/BOE.8.000460
  11. O.A. Smolyanskaya, I.J. Schelkanova, M.S. Kulya, E.L. Odlyanitskiy, I.S. Goryachev, A.N. Tcypkin, Ya.V. Grachev, Ya.G. Toropova, V.V Tuchin. Biomed. Opt. Express, 9 (3), 1198-1215 (2018). DOI: 10.1364/BOE.9.001198
  12. X. Ding, G. Costa, A.I. Hernandez-Serrano, R.I. Stantchev, G. Nurumbetov, D.M. Haddleton, E. Pickwell-MacPherson. Biomed. Opt. Express, 14 (3), 1146-1158 (2023). DOI: 10.1364/BOE.473097
  13. J. Wang, Q. Sun, R.I. Stantchev, T.-W. Chiu, A.T. Ahuja, E. Pickwell-MacPherson. Biomed. Opt. Express, 10 (7), 3584-3590 (2019). DOI: 10.1364/BOE.10.003584
  14. O.P. Cherkasova, D.S. Serdyukov, E.F. Nemova, A.S. Ratushnyak, A.S. Kucheryavenko, I.N. Dolganova, G. Xu, M. Skorobogatiy, I.V Reshetov, P.S. Timashev, I.E. Spektor, K.I. Zaytsev, V.V Tuchin. J. Biomed. Opt., 26 (9), 90902 (2021). DOI: 10.1117/1.JBO.26.9.090902
  15. H. Cheon, J.K. Hur, W. Hwang, H.-J. Yang, J.-H. Son. Sci. Rep., 13, 4930 (2023). DOI: 10.1038/s41598-023-31828-w
  16. N.V. Chernomyrdin, G.R. Musina, P.V Nikitin, I.N. Dolganova, A.S. Kucheryavenko, A.I. Alekseeva, Y. Wang, D. Xu, Q. Shi, V.V Tuchin, K.I. Zaytsev. Opto. Electron. Adv., 6 (5), 220071 (2023). DOI: 10.29026/oea.2023.220071
  17. E. Pickwell, B.E. Cole, A.J. Fitzgerald, V.P. Wallace, M. Pepper. Appl. Phys. Lett., 84 (12), 2190?2192 (2004). DOI: 10.1063/1.1688448
  18. S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, S. Yamamoto. Phys. Med. Biol., 61 (18), 6808 (2016). DOI: 10.1088/0031-9155/61/18/6808
  19. A.A. Gavdush, N.V. Chernomyrdin, G.A. Komandin, I.N. Dolganova, P.V. Nikitin, G.R. Musina, G.M. Katyba, A.S. Kucheryavenko, I.V. Reshetov, A.A. Potapov, V.V. Tuchin, K.I. Zaytsev. Biomed. Opt. Express, 12 (1), 69-83 (2021). DOI: 10.1364/BOE.411025
  20. A.S. Kucheryavenko, I.N. Dolganova, A.A. Zhokhov, V.M. Masalov, G.R. Musina, V.V. Tuchin, N.V. Chernomyrdin, A.A. Gavdush, D.R. Il'enkova, S.V. Garnov, K.I. Zaytsev. Phys. Rev. Appl., 20 (5), 054050 (2023). DOI: 10.1103/PhysRevApplied.20.054050
  21. P. Doradla, K. Alavi, C.S. Joseph, R.H. Giles. J. Biomed. Opt., 18 (9), 90504 (2013). DOI: 10.1117/1.JBO.18.9.090504
  22. C.S. Joseph, R. Patel, V.A. Neel, R.H. Giles, A.N. Yaroslavsky. J. Biophotonics, 7 (5), 295-303 (2014). DOI: 10.1002/jbio.201200111
  23. B. Fan, V.A. Neel, A.N. Yaroslavsky. Las. Surg. Med., 49 (5), 319-326 (2017). DOI: 10.1002/lsm.22552
  24. A. Yaroslavsky, C. Joseph, R. Patel, A. Muzikansky, V. Neel, R. Giles. J. Biomed. Photon. Eng., 3 (1), 3170 (2017). DOI: 10.18287/JBPE17.03.010301
  25. X. Chen, Q. Sun, J. Wang, H. Lindley-Hatcher, E. Pickwell-MacPherson. Adv. Photon. Res., 2 (1), 2000024 (2021). DOI: 10.1002/adpr.202000024
  26. X. Chen, E. Pickwell-MacPherson. APL Photon., 7 (7), 71101 (2022). DOI: 10.1063/5.0094056
  27. R. D' Antuono, J.W. Bowen. J. Microsc., 288 (3), 207-217 (2022). DOI: 10.1111/jmi.13132
  28. U. Schade, K. Holldack, P. Kuske, G. Wustefeld, H.-W. Hubers. Appl. Phys. Lett., 84 (8), 1422-1424 (2004). DOI: 10.1063/1.1650034
  29. C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, C.-K. Sun. Opt. Lett., 34 (7), 1084-1086 (2009). DOI: 10.1364/OL.34.001084
  30. Z. Li, Z. Zang, J. Wang, X. Lu, Z. Yang, H. Wang, H.-L. Cui, S. Yan. IEEE Trans. Terahertz Sci. Technol., 12 (5), 457-463 (2022). DOI: 10.1109/TTHZ.2022.3170010
  31. K. Okada, K. Serita, Q. Cassar, H. Murakami, G. MacGrogan, J.-P. Guillet, P. Mounaix, M. Tonouchi. J. Phys. Photon., 2 (4), 44008 (2020). DOI: 10.1088/2515-7647/abbcda
  32. Z. Li, S. Yan, Z. Zang, G. Geng, Z. Yang, J. Li, L. Wang, C. Yao, H.-L. Cui, C. Chang, H. Wang. Cell Prolif., 53 (4), e12788 (2020). DOI: 10.1111/cpr.12788
  33. K. Okada, Q. Cassar, H. Murakami, G. MacGrogan, J.-P. Guillet, P. Mounaix, M. Tonouchi, K. Serita. Opt. Contin., 1 (3), 527-537 (2022). DOI: 10.1364/OPTCON.448444
  34. N.V. Chernomyrdin, A.S. Kucheryavenko, G.S. Kolontaeva, G.M. Katyba, I.N. Dolganova, P.A. Karalkin, D.S. Ponomarev, V.N. Kurlov, I.V. Reshetov, M. Skorobogatiy, V.V. Tuchin, K.I. Zaytsev. Appl. Phys. Lett., 113 (11), 111102 (2018). DOI: 10.1063/1.5045480
  35. N.V. Chernomyrdin, M. Skorobogatiy, A.A. Gavdush, G.R. Musina, G.M. Katyba, G.A. Komandin, A.M. Khorokhorov, I.E. Spektor, V.V. Tuchin, K.I. Zaytsev. Optica, 8 (11), 1471-1480 (2021). DOI: 10.1364/OPTICA.439286
  36. N.V Chernomyrdin, A.S. Kucheryavenko, E.N. Rimskaya, I.N. Dolganova, V.A. Zhelnov, P.A. Karalkin, A.A. Gryadunova, I.V. Reshetov, D.V. Lavrukhin, D.S. Ponomarev, V.E. Karasik, K.I. Zaytsev. Opt. Spectrosc., 126 (5), 560-567 (2019). DOI: 10.1134/S0030400X19050059
  37. A.S. Kucheryavenko, N.V. Chernomyrdin, A.A. Gavdush, A.I. Alekseeva, P.V. Nikitin, I.N. Dolganova, P.A. Karalkin, A.S. Khalansky, I.E. Spektor, M. Skorobogatiy, V.V. Tuchin, K.I. Zaytsev. Biomed. Opt. Express, 12 (8), 5272-5289 (2021). DOI: 10.1364/BOE.432758
  38. G.R. Musina, N.V Chernomyrdin, E.R. Gafarova, A.A. Gavdush, A.J. Shpichka, G.A. Komandin, V.B. Anzin, E.A. Grebenik, M.V Kravchik, E.V. Istranova, I.N. Dolganova, K.I. Zaytsev, P.S. Timashev. Biomed. Opt. Express, 12 (9), 5368 (2021). DOI: 10.1364/BOE.433216
  39. V.V Tuchin. J. Biomed. Opt., 21 (7), 71114 (2016). DOI: 10.1117/1.JBO.21.7.071114
  40. A.N. Bashkatov, K. V Berezin, K.N. Dvoretskiy, M.L. Chernavina, E.A. Genina, V.D. Genin, V.I. Kochubey, E.N. Lazareva, A.B. Pravdin, M.E. Shvachkina, P.A. Timoshina, D.K. Tuchina, D.D. Yakovlev, D.A. Yakovlev, I.Y. Yanina, O.S. Zhernovaya, V.V Tuchin. J. Biomed. Opt., 23 (9), 91416 (2018). DOI: 10.1117/1.JBO.23.9.091416
  41. S.-Y. Lu, R.A. Chipman. J. Opt. Soc. Am., 13 (5), 1106-1113 (1996). DOI: 10.1364/JOSAA.13.001106
  42. R. Ossikovski. J. Opt. Soc. Am., 25 (2), 473-482 (2008). DOI: 10.1364/JOSAA.25.000473
  43. R. Ossikovski. J. Opt. Soc. Am., 26 (5), 1109-1118 (2009). DOI: 10.1364/JOSAA.26.001109
  44. O. Arteaga, A. Canillas. J. Opt. Soc. Am., 26 (4), 783-793 (2009). DOI: 10.1364/JOSAA.26.000783
  45. S. Manhas, J. Vizet, S. Deby, J.-C. Vanel, P. Boito, M. Verdier, A. De Martino, D. Pagnoux. Opt. Express, 23 (3), 3047 (2015). DOI: 10.1364/OE.23.003047
  46. D. Vala, M. Micica, D. Cvejn, K. Postava. RSC Adv., 13 (10), 6582-6592 (2023). DOI: 10.1039/D3RA00101F
  47. N.V. Chernomyrdin, D.R. Il'enkova, V.A. Zhelnov, A.I. Alekseeva, A.A. Gavdush, G.R. Musina, P.V. Nikitin, A.S. Kucheryavenko, I.N. Dolganova, I.E. Spektor, V.V. Tuchin, K.I. Zaytsev. Sci. Rep., 13 (1), 16596 (2023). DOI: 10.1038/s41598-023-43857-6
  48. P. Greil, T. Lifka, A. Kaindl. J. Eur. Ceram. Soc., 18 (14), 1961-1973 (1998). DOI: 10.1016/S0955-2219(98)00156-3
  49. A.E. Ershov, S.L. Shikunov, V.N. Kurlov. Tech. Phys., 62 (6), 903-910 (2017). DOI: 10.1134/S1063784217060093
  50. C.R. Simovski, P.A. Belov, A.V. Atrashchenko, Y.S. Kivshar. Adv. Mater., 24 (13), 4229-4248 (2012). DOI: 10.1002/adma.201200931
  51. H. van de Hulst. Wiley. Light Scattering by Small Particles (John Wiley and Sons, New York, 1957). DOI: 10.1063/1.3060205
  52. X. Chen, Q. Sun, J. Wang, H. Lindley-Hatcher, E. Pickwell-MacPherson. Adv. Photon. Res., 2 (1), 2000024 (2021). DOI: 10.1002/adpr.202000024
  53. A.V. Shchepetilnikov, A.M. Zarezin, V.M. Muravev, P.A. Gusikhin, I.V. Kukushkin. Opt. Eng., 59 (6), 61617 (2020). DOI: 10.1117/1.OE.59.6.061617
  54. E. Fariza, T. O'Day, A.E. Jalkh, A. Medina. Arch. Ophthalmol., 107 (4), 608-610 (1989). DOI: 10.1001/archopht.1989.01070010622044
  55. Z. Tannous, M. Al-Arashi, S. Shah, A.N. Yaroslavsky. Las. Surg. Med., 41 (1), 10-16 (2009). DOI: 10.1002/lsm.20736
  56. I. Ahmad, M. Ahmad, K. Khan, M. Ikram. Photodiagnosis Photodyn. Ther., 14, 134-141 (2016). DOI: 10.1016/j.pdpdt.2016.04.004
  57. S. Shrestha, A. Deshpande, T. Farrahi, T. Cambria, T. Quang, J. Majeski, Y. Na, M. Zervakis, G. Livanos, G.C. Giakos. Biomed. Signal. Process. Control, 40, 505-518 (2018). DOI: 10.1016/j.bspc.2017.05.009
  58. S. Alali, K.J. Aitken, A. Schr?der, A. Gribble, D.J. Bagli, I.A. Vitkin. Biomed. Opt. Express, 5 (2), 621-629 (2014). DOI: 10.1364/BOE.5.000621
  59. H. Mueller, F. Melsheimer. Zeitschrift Fur Technische Physik, 22, 53-63 (1941)
  60. J.L. Pezzaniti, R.A. Chipman. Opt. Eng., 34 (6), 1558-1568 (1995). DOI: 10.1117/12.206161
  61. N. Ghosh, M.F.G. Wood, I.A. Vitkin. J. Biomed. Opt., 13 (4), 44036 (2008). DOI: 10.1117/1.2960934
  62. J. Song, N. Zeng, H. Ma, V.V Tuchin. IEEE J. Sel. Top. Quantum Electron., 29 (4), 1-9 (2023). DOI: 10.1109/JSTQE.2022.3197599
  63. D.H. Goldstein. Appl. Opt., 31 (31), 6676-6683 (1992). DOI: 10.1364/AO.31.006676
  64. Z. Chen, X. Chen, L. Tao, K. Chen, R. Zhang, M. Long, E. Pickwell-MacPherson, J. Xu. ACS Photon., 9 (11), 3633-3641 (2022). DOI: 10.1021/acsphotonics.2c01128
  65. X. Liu, X. Chen, E.P.J. Parrott, C. Han, G. Humbert, A. Crunteanu, E. Pickwell-MacPherson. APL Photon., 3 (5), 51604 (2018). DOI: 10.1063/1.5010940
  66. X. Liu, X. Chen, E.P.J. Parrott, E. Pickwell-MacPherson. Photon. Res., 5 (4), 299 (2017). DOI: 10.1364/PRJ.5.000299
  67. C. Han, E.P.J. Parrott, E. Pickwell-MacPherson. IEEE J. Sel. Top. Quantum Electron., 23 (4), 1-6 (2017). DOI: 10.1109/JSTQE.2016.2641581
  68. A.I. Hernandez-Serrano, Q. Sun, E.G. Bishop, E.R. Griffiths, C.P. Purssell, S.J. Leigh, J. Lloyd-Hughes, E. Pickwell-MacPherson. Opt. Express, 27 (8), 11635 (2019). DOI: 10.1364/OE.27.011635
  69. A.I. Hernandez-Serrano, D.M. Mittleman, E. Pickwell-MacPherson. Opt. Lett., 45 (5), 1208 (2020). DOI: 10.1364/OL.45.001208

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru