Tebeneva T. S.1, Shitikov A. E.1, Benderov O. V.2, Lobanov V. E.1, Rodin A. V.2, Bilenko I. A.1,3
1Russian Quantum Center, Moscow, Russia
2Moscow Institute of Physics and Technology, Dolgoprudny, Moscow oblast, Russia
3Department of Physics, Lomonosov Moscow State University, Moscow, Russia
Email: tetasia19@gmail.com
Optical high-quality-factor microresonators with whispering gallery modes are extremely promising for various photonic devices, including for the mid-infrared range applications. This range is of great interest for both fundamental and applied problems due to the presence of the fundamental absorption bands of various molecules - the "fingerprint region". The most promising materials for IR photonics based on optical microresonators are various amorphous materials suitable for mass production of microresonators with high-quality-factor in this range. The paper describes a technique for manufacturing high-quality-factor microresonators from arsenic sulfide (As2S3) and fluoride glass (ZBLAN) by melting optical fibers, and also examines various defects that arise during the manufacturing process and suggests methods for eliminating them. It is shown that the presented technique makes it possible to achieve a level of quality factor for microresonators limited by fundamental optical losses in the materials used. Keywords: Whispering gallery modes optical microresonators, fabrication, fluoride fiber, chalcogenide fiber, quality factor measurements.
- V.B. Braginsky, M.L. Gorodetsky, V.S. Ilchenko. Phys. Lett. A, 137, 393--397 (1989). DOI: 10.1016/0375-9601(89)90912-2
- K.J. Vahala. Nature, 424, 839--846 (2003). DOI: 10.1038/nature01939
- V.S. Ilchenko, A.B. Matsko. IEEE J. Select. Topics Quantum Electron., 12, 15--32 (2006). DOI: 10.1109/JSTQE.2005.862943
- J. Zhu, S.K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang. Nature Photonics, 4, 46--49 (2010). DOI: 10.1038/nphoton.2009.237
- J. Ward, O. Benson. Laser \& Photonics Reviews 5, 553--570 (2011). DOI: 10.1002/lpor.201000025
- F. Vollmer, S. Arnold. Nature Methods 5, 591--596 (2008). DOI: 10.1038/nmeth.1221
- F. Vollmer, H.G.L. Schwefel. Eur. Phys. J. Spec. Top. 223, 1907--1916 (2014). DOI: 10.1140/epjst/e2014-02271-2
- G. Lin, A. Coillet, Y.K. Chembo. Adv. Opt. Photon., AOP 9, 828--890 (2017). DOI: 10.1364/AOP.9.000828
- T. Kippenberg. Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities, Ph.D thesis, California Institute of Technology, 2004. URL: https://thesis.library.caltech.edu/2487/
- A. Pasquazi, M. Peccianti, L. Razzari, D.J. Moss, S. Coen, M. Erkintalo, Y.K. Chembo, T. Hansson, S. Wabnitz, P. Del'Haye, X. Xue, A.M. Weiner, R. Morandotti. Physics Reports 729, 1--81 (2018). DOI: 10.1016/j.physrep.2017.08.004
- Y. Deng, R.K. Jain, M. Hossein-Zadeh. Optics Lett., 39, 4458 (2014). DOI: 10.1364/OL.39.004458
- B. Behzadi, R.K. Jain, M. Hossein-Zadeh. Laser Physics Lett., 15, 085112 (2018). DOI: 10.1088/1612-202X/aac5c8
- L. He, S.K. Ozdemir, L. Yang, Laser \& Photonics Reviews 7, 60--82 (2013). DOI: 10.1002/lpor.201100032
- R.R. Galiev, N.G. Pavlov, N.M. Kondratiev, S. Koptyaev, V.E. Lobanov, A.S. Voloshin, A.S. Gorodnitskiy, M.L. Gorodetsky. Opt. Express, OE 26, 30509--30522 (2018). DOI: 10.1364/OE.26.030509
- W. Liang, V.S. Ilchenko, D. Eliyahu, A.A. Savchenkov, A.B. Matsko, D. Seidel, L. Maleki. Nature Communications 6, 7371 (2015). DOI: 10.1038/ncomms8371
- A.E. Shitikov, I.I. Lykov, O.V. Benderov, D.A. Chermoshentsev, I.K. Gorelov, A.N. Danilin, R.R. Galiev, N.M. Kondratiev, S.J. Cordette, A.V. Rodin, A.V. Masalov, V.E. Lobanov, I.A. Bilenko, Opt. Express, 31, 313--327 (2023). DOI: 10.1364/OE.478009
- S. Arnold, D. Keng, S.I. Shopova, S. Holler, W. Zurawsky, F. Vollmer. Opt. Express 17, 6230 (2009). DOI: 10.1364/OE.17.006230
- W. von Klitzing, R. Long, V.S. Ilchenko, J. Hare, V. Lef\`evre-Seguin. New J. Phys. 3, 14--14 (2001). DOI: 10.1088/1367-2630/3/1/314
- B. Behzadi, R.K. Jain, M. Hossein-Zadeh. IEEE J. Quantum Electron., 53, 1--9 (2017). DOI: 10.1109/JQE.2017.2771423
- S. Jiang, C. Guo, K. Che, Z. Luo, T. Du, H. Fu, H. Xu, Z. Cai. Photon. Res., 7, 566--572 (2019). DOI: 10.1364/PRJ.7.000566
- A.E. Shitikov, I.A. Bilenko, N.M. Kondratiev, V.E. Lobanov, A. Markosyan, M.L. Gorodetsky. Optica, 5, 1525--1528 (2018). DOI: 10.1364/OPTICA.5.001525
- R. Shankar, I. Bulu, M. Lonvcar. Applied Physics Lett. 102, 051108 (2013). DOI: 10.1063/1.4791558
- D. Ren, C. Dong, S.J. Addamane, D. Burghoff. Nature Communications 13, 5727 (2022). DOI: 10.1038/s41467-022-32706-1
- R. Armand, M. Perestjuk, A. Della Torre, M. Sinobad, A. Mitchell, A. Boes, J.-M. Hartmann, J.-M. Fedeli, V. Reboud, P. Brianceau, A. De Rossi, S. Combrie, C. Monat, C. Grillet. APL Photonics, 8, 071301 (2023). DOI: 10.1063/5.0149324
- T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S.Y. Set, M. Takenaka, H.K. Tsang, Z. Cheng, K. Goda. Opt. Lett., 43, 2885 (2018). DOI: 10.1364/OL.43.002885
- P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, G. Brambilla. Opt. Lett., 37, 728 (2012). DOI: 10.1364/OL.37.000728
- I.S. Grudinin, K. Mansour, N. Yu. Opt. Lett., 41, 2378 (2016). DOI: 10.1364/OL.41.002378
- W. Liang, A.B. Matsko, A.A. Savchenkov, V.S. Ilchenko, D. Seidel, L. Maleki, In: 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, p. 1--6. DOI: 10.1109/FCS.2011.5977304
- C. Lecaplain, C. Javerzac-Galy, M.L. Gorodetsky, T.J. Kippenberg. Nature Communications, 7, 13383 (2016). DOI: 10.1038/ncomms13383
- B. Way, R.K. Jain, M. Hossein-Zadeh. In: IEEE Photonics Conference 2012, p. 143--144
- R.K. Jain, B. Way, M. Klopfer, I. Small, M. Saad, M. Hossein-Zadeh. In: IEEE Photonics Conference 2012, p. 727--728
- F. Vanier, P. Bianucci, N. Godbout, M. Rochette, Y.-A. Peter. In: 2012 International Conference on Optical MEMS and Nanophotonics (2012), p. 45--46
- A.V. Andrianov, E.A. Anashkina. Opt. Express, OE 29, 5580--5587 (2021). DOI: 10.1364/OE.415787
- E.A. Anashkina, A.A. Sorokin, M.P. Marisova, A.V. Andrianov. J. Non-Crystalline Solids, 522, 119567 (2019). DOI: 10.1016/j.jnoncrysol.2019.119567
- F. Vanier. Nonlinear optics in chalcogenide and tellurite microspheres for the generation of mid-infrared frequencies, Ph.D. thesis, Ecole Polytechnique de Montreal, 2015. URL: https://publications.polymtl.ca/2021/
- V.S. Ilchenko, A.A. Savchenkov, A.B. Matsko, L. Maleki. Phys. Rev. Lett., 92, 043903 (2004). DOI: 10.1103/PhysRevLett.92.043903
- K.N. Minkov, A.N. Danilin, A.E. Shitikov, I.K. Gorelov, M.L. Galkin, A.V. Mantuzov, E.A. Artemov, M.I. Krasivskaya, V.E. Lobanov, I.A. Bilenko. J. Opt. Technol., 89, 691 (2022). DOI: 10.1364/JOT.89.000691
- K.N. Min'kov, G.V. Likhachev, N.G. Pavlov, A.N. Danilin, A.E. Shitikov, A.I. Yurin, E.A. Lonshakov, F.V. Bulygin, V.E. Lobanov, I.A. Bilenko. J. Opt. Technol., 88, 348 (2021). DOI: 10.1364/JOT.88.000348
- M.L. Gorodetsky, A.A. Savchenkov, V.S. Ilchenko. Optics Lett., 21, 453--455 (1996). DOI: 10.1364/OL.21.000453
- J.M. Ward, Y. Wu, K. Khalfi, S.N. Chormaic. Review of Scientific Instruments, 81, 073106 (2010). DOI: 10.1063/1.3455198
- G.R. Elliott, G.S. Murugan, J.S. Wilkinson, M.N. Zervas, D.W. Hewak. Opt. Express, OE 18, 26720--26727 (2010). DOI: 10.1364/OE.18.026720
- Y. Xie, D. Cai, J. Pan, N. Zhou, Y. Gao, Y. Jin, X. Jiang, J. Qiu, P. Wang, X. Guo, L. Tong. Small, 17, 2100140 (2021). DOI: 10.1002/smll.202100140
- D. O'Shea, C. Junge, S. Nickel, M. Pollinger, A. Rauschenbeutel. In: Laser Resonators and Beam Control XIII (International Society for Optics and Photonics, 2011), vol. 7913, p. 79130N
- G.S. Murugan, J.S. Wilkinson, M.N. Zervas. Opt. Express, OE 17, 11916--11925 (2009). DOI: 10.1364/OE.17.011916
- S.B. Papp, P. Del'Haye, S.A. Diddams. Phys. Rev. X, 3, 031003 (2013). DOI: 10.1103/PhysRevX.3.031003
- P. Del'Haye, S.A. Diddams, S.B. Papp. Appl. Phys. Lett., 102, 221119 (2013). DOI: 10.1063/1.4809781
- M. Sumetsky, J.M. Fini. Opt. Express, OE 19, 26470--26485 (2011). DOI: 10.1364/OE.19.026470
- M. Sumetsky. Progress in Quantum Electronics, 64, 1--30 (2019). DOI: 10.1016/j.pquantelec.2019.04.001
- N.A. Toropov, M. Sumetsky. Opt. Lett., 41, 2278 (2016). DOI: 10.1364/OL.41.002278
- M. Sumetsky, Y. Dulashko. Opt. Express, OE 20, 27896--27901 (2012). DOI: 10.1364/OE.20.027896
- F. Vanier, M. Rochette, N. Godbout, Y.-A. Peter. Opt. Lett., OL 38, 4966--4969 (2013). DOI: 10.1364/OL.38.004966
- F. Vanier, Y.-A. Peter, M. Rochette. Opt. Express, OE 22, 28731--28739 (2014). DOI: 10.1364/OE.22.028731
- D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala. Nature, 421, 925--928 (2003). DOI: 10.1038/nature01371
- B. Way, R.K. Jain, M. Hossein-Zadeh. Opt. Lett., OL 37, 4389--4391 (2012). DOI: 10.1364/OL.37.004389
- P. Wang, G.S. Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, G. Farrel. IEEE Photonics Technology Lett., 24, 1103--1105 (2012). DOI: 10.1109/LPT.2012.2195722
- M. Poulain, M. Poulain, J. Lucas. Materials Research Bulletin 10, 243--246 (1975). DOI: 10.1016/0025-5408(75)90106-3
- L.V. Zhukova, A.S. Korsakov, A.E. L'vov, D.D. Salimgareev. Volokonnye svetovody dlya srednego infrakrasnogo diapazona (Ekaterinburg, Uchebno-Metod. Tsentr UPI, 2016) (in Russian)
- B.J. Eggleton. Opt. Express, OE 18, 26632--26634 (2010). DOI: 10.1364/OE.18.026632
- L. Zhang, F. Gan, P. Wang. Appl. Opt., AO 33, 50--56 (1994). DOI: 10.1364/AO.33.000050
- E.A. Anashkina. Dispersionnye i nelineinye svoistva sfericheskikh mikrorezonatorov na osnove razlichnykh stekol (Nizhny Novgorod, Nizhegorod. Gos. Univ., 2019) (in Russian)
- L. Wetenkamp, G.F. West, H. Tobben. J. Non-Crystalline Solids, 140, 35--40 (1992). DOI: 10.1016/S0022-3093(05)80737-9
- L.A. Harrington. Infrared Fibers and Their Applications (SPIE Press, 2004)
- T.-C. Ong, B. Fogarty, T. Steinberg, E. Jaatinen, J. Bell. International Journal of Applied Glass Science, 10, 391--400 (2019). DOI: 10.1111/ijag.13096
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.