Study of a thermodynamic microwave-heated noise-source for calibration of RFTES detector
Kim T. M.
1, V.I. Chichkov
1, Shitov S. V.
1,21National University of Science and Technology MISiS, Moscow, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Email: sergey3e@gmail.com
A concept and experimental data are presented for testing a miniature thermodynamic noise-source based on heating a niobium film bridge in a superconducting resonator at a frequency of about 1.4 GHz. The thermodynamic noise signal was emitted by a double-slot superconducting integrated lens antenna in the range 550-750 GHz in the form of a collimated beam with a length of about 15 mm onto the aperture of the RFTES detector; both devices are installed on the same stage of a dilution cryostat at a physical temperature of the emitting chip and detector of about 60 mK. For the first time, the optical effect of a microminiature thermodynamic noise-source in the terahertz range on an ultra-low temperature bolometer has been observed. The thermal load of the experimental noise-source on the dilution cryostat was analyzed. Keywords: thermodynamic noise, superconducting transition, superconducting microbridge, superconducting resonator, planar lens-antenna, direct detector, RFTES detector.
- A.V. Merenkov, T.M. Kim, V.I. Chichkov, S.V. Kalinkin, S.V. Shitov. FTT, 64 (10), 1404 (2022). https://doi.org/10.21883/PSS.2022.10.54223.50HH
- T.M. Kim, A.V. Merenkov, An.B. Ermakov, L.S. Solomatov, V.I. Chichkov, S.V. Shitov. ZhTF, 93 (7), 995 (2023). https://doi.org/10.21883/JTF.2023.07.55759.117-23
- A.V. Uvarov, S.V. Shitov, A.N. Vystavkin. Measur. Techniq., 53 (9), 1047 (2010). DOI:10.1007/s11018-010-9617-4
- Ph. Abbon, A. Delbart, M. Fesquet, C. Magneville, B. Mazeau, J.-P. Pansart, D. Yvon, L. Dumoulin, S. Marnieros, Ph. Camus, T. Durand, Ch. Hoffmann. Nucl. Instrum. Methods Phys. Res. A, 575 (3), 412 (2007). https://doi.org/10.1016/j.nima.2007.02.094
- S. Masi, P. de Bernardis, A. Paiella, F. Piacentini, L. Lamagna, A. Coppolecchia, P.A.R. Ade, E.S. Battistelli, M.G. Castellano, I. Colantoni, F. Columbro, G. D'Alessandro, M. De Petris, S. Gordon, C. Magneville, P. Mauskopf, G. Pettinari, G. Pisano, G. Polenta, G. Presta, E. Tommasi, C. Tucker, V. Vdovin, A. Volpe, D. Yvon. J. Cosmology and Astroparticle Phys., 2019 (003), (2019). https://doi.org/10.1088/1475-7516/2019/07/003
- M. Tarasov, A. Gunbina, A. Chekushkin, M. Strelkov, V. Edelman. Appl. Sci., 12 (14), 7349 (2022). https://doi.org/10.3390/app12147349
- A.V. Gordeeva, V.O. Zbrozhek, A.L. Pankratov, L.S. Revin, V.A. Shamporov, A.A. Gunbina, L.S. Kuzmin. Appl. Phys. Lett., 110, 162603 (2017). https://doi.org/10.1063/1.4982031
- L.S. Kuzmin, A.L. Pankratov, A.V. Gordeeva, V.O. Zbrozhek, V.A. Shamporov, L.S. Revin, A.V. Blagodatkin, S. Masi, P. de Bernardis. Commun. Phys., 2, 104 (2019). https://doi.org/10.1038/s42005-019-0206-9
- T.M. Kim, S.V. Shitov. Pis'ma v ZhTF 24, 13 (2021) (in Russian). https://doi.org/10.21883/PJTF.2021.24.51791.18897
- S.V. Shitov, T.M. Kim. Superconducting Source of Thermodynamic Noise (Patent RF na izobretenie (RU 2 757 756 C1). Prioritet ot 20.04.2021)
- S.V. Shitov, T.M. Kim. Superconducting Source of High-Frequency Noise (Patent RF na izobretenie (RU 2 757 858 C1). Prioritet ot 21.04.2021)
- E.M. Gershenzon, M.E. Gershenzon, G.N. Gol'tsman, A.M. Lyul'kin, A.D. Semenov, A.V. Sergeev. Sov. Phys. JETP, 70 (3), 505 (1990)
- A.A. Kuzmin, M. Merker, S.H. Wuensch, M. Siegel, A.D. Semenov, S.V. Shitov, A.V. Ustinov. Appl. Phys. Lett., 111 (4), 042601 (2017). https://doi.org/10.1063/1.4995981
- J. Clarke, P.L. Richards, N.H. Yeh. Appl. Phys. Lett., 30, 6 664 (1977). https://doi.org/10.1063/1.89278
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.