The Spall Strength and Hugoniot Elastic Limit of Iron-Nickel Alloys of Meteoritic Origin
S.V.Razorenov1, A.S.Savinykh1, G.V.Garkushin1, R.F.Muftakhetdinova2, I.V.Khomskaya3, G.A.Yakovlev2,4, V.A.Khotinov2, V.I.Grokhovsky2
1Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
2Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
3Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
4A.N.Zavaritsky Institute of Geology and GeochemistryUral Branch, Russian Academy of Sciences, Ekaterinburg, Russia
Email: razsv@ficp.ac.ru
The results of measurements of critical fracture stresses (spall strength) and parameters of the elastic-plastic transition of samples of four iron meteorites: Chinga, Sikhote-Alin, Seymchan and Dronino under shock wave loading are presented. The experiments were carried out on a pneumatic gun at a shock compression intensity of ~5.5 and ~11 GPa and a strain rate before spall fracture of ~10^5 s-1. The strength characteristics were determined from the analysis of complete wave profiles recorded during the loading of samples using a VISAR laser interferometer with high spatial and temporal resolution. It was found that the samples of the Sikhote-Alin meteorite demonstrated the highest Hugoniot elastic limit of all the tested samples, which was 1.6 GPa. The highest value of the spall strength (3.92-4.04 GPa) was measured on the samples of ataxite Chinga. A comparative analysis of the strength characteristics of the studied meteorites with the strength properties of the iron-nickel alloy H6, which has a composition close to meteorite, as well as with a number of modern structural steels for various purposes, was carried out. The comparison has shown that the strength characteristics of iron meteorites under these loading conditions are close to the strength properties of the steels and iron-nickel alloys of terrestrial origin. Keywords: iron meteorite, shock wave loading, spall strength, Hugoniot elastic limit, microstructure.
- L.V. Rykhlova, B.M. Shustov. V sb.: Asteroidno-kometnaya opasnost: vchera, segodnya, zavtra, pod red. B.M. Shustova, L.V. Rykhlovoy (Fizmatlit, M., 2010), p. 384 (in Russian)
- A.V. Volkov, V.A. Ostreykovsky. Vestnik kibernetiki, 4 (36), 17 (2019) (in Russian)
- B.M. Shustov. V sb.: Asteroidno-kometnaya opasnost: strategiya protivodeystviya, pod red. V.A. Puchkova (VNII GOChS (FTs), M., 2015), p. 272 (in Russian)
- C.D. Hall, I.M. Ross. Adv. Astronautical Sci., Astrodynamics, 97 (I), 613 (1997)
- B.M. Shustov. Phys. Uspekhi, 54 (10), 1068 (2011). DOI: 10.3367/UFNe.0181.201110e.1104)
- D.V. Petrov. V sb.: Asteroidnaya opasnost s tochki zreniya fizikov-oruzheynikov, pod red. D.V. Petrova, O.N. Shubina, V.N. Nogina, V.A. Simonenko (Izd-vo RFYaTs --- VNIITF, Snezhinsk, 2023), p. 488 (in Russian)
- V.S. Sazonov, M.V. Yakovlev. J. Eng. Phys. Thermophys., 79, 476 (2006). DOI: 10.1007/s10891-006-0124-z
- V.S. Sazonov. Kosmonavtika i raketostroenie, 2 (51), 68 (2008) (in Russian)
- J.J. Petrovic. J. Mater. Sci., 36, 1579 (2001). DOI: 10.1023/A:1017546429094
- A. Schmalen, R. Luther, N. Artemieva. Meteorit. Planet. Sci., 57 (8), 1496 (2022). DOI: 10.1111/maps.13832
- V.F. Buchwald. Handbook of Iron Meteorites (Berkeley University of California Press, 1975)
- H.J. Axon, E. Smith, F. Knowles. Meteoritics, 17 (2), 49 (1982)
- V.I. Grokhovsky, M.I. Oshtrakh, K.A. Uymina, M.V. Goryunov, V.A. Semionkin. Meteorit. Planet. Sci., 46 (S1), 5308 (2011)
- V.V. Adushkina. Katastroficheskie vozdeystviya kosmicheskikh tel (IKTs Akademkniga, M., 2005)
- K.A. Skripko. Zhizn Zemli, 39 (2), 201 (2017) (in Russian)
- D. Neikerk, R.C. Greenwood. Meteorit. Planet. Sci., 42 (SI), A154 (2007)
- L.G. Kvasha. Meteoritika, 34, 15 (1975) (in Russian)
- M.I. Diakonova. Meteoritika, 16, 42 (1958) (in Russian)
- V.I. Grokhovsky, V.F. Ustyugov, D.D. Badyukov, M.A. Nazarov. In: 36th LPSC, abstract 1692 (2005)
- A.A. Pyatkov, V.I. Grokhovsky, S.V. Gladkovsky. V sb. Mineraly: stroenie, svoystva, metody issledovaniya, pod red. S.M. Lebedevoy, L.M. Osipovoy, M.A. Krylovoy. (IMin UrO RAN, Miass, 2011), p. 253-255 (in Russian)
- I.V. Khomskaya Phys. Met. Metallogr., 110, 197 (2010)
- L.M. Barker, R.E. Hollenbach. J. Appl. Phys., 43, 4669 (1972). DOI: 10.1063/1.1660986
- M.A. Meyers, C.T. Aimone. Progr. Mater. Sci., 28, 1 (1983)
- G.I. Kanel. Shock Waves in Solid State Physics (CRC Press, Taylor and Francis Group, Boca Raton, London, NY., 2019)
- G.I. Kanel. Int. J. Fracture, 163, 173 (2010). DOI: 10.1007/s10704-009-9438-0
- S.V. Razorenov, G.I. Kanel, V.G. Anufriev, V.F. Loskutov. Strength Mater., 24, 270 (1992). DOI: 10.1007/BF00778389
- G.I. Kanel, G.V. Garkushin, A.S. Savinykh, S.V. Razorenov, S.A. Atroshenko. Tech. Phys., 65 (3), 420 (2020). DOI: 10.1134/S1063784220030111
- G.I. Kanel, G.V. Garkushin, A.S. Savinykh, S.V. Razorenov, S.A. Atroshenko. Tech. Phys., 67 (14), 2221 (2022). DOI: 10.21883/TP.2022.14.55222.116-21
- A.S. Savinykh, G.V. Garkushin, S.V. Razorenov, S. Wolf, L. Kruger. Combustion and Explosion and Shock Waves, 51 (1), 124 (2015). DOI: 10.1134/S001050821501013X
- S.V. Razorenov, A.A. Bogach, G.I. Kanel'. Phys. Metals Metallography, 83 (1), 100 (1997)
- V.D. Gluzman, G.I. Kanel', V.F. Loskutov, V.E. Fortov, I.E. Khorev. Strength Mater., 17 (8), 1093 (1985). DOI: 10.1007/bf01533790
- E.B. Zaretsky, G.I. Kanel. J. Appl. Phys., 117, 195901 (2015). DOI: 10.1063/1.4921356
- G.V. Garkushin, G.I. Kanel, S.V. Razorenov, A.S. Savinykh. Mechan. Solids, 52 (4), 407 (2017). DOI: 10.3103/S0025654417040070
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.