Features of process control in the structure of the nutation line for the formation of a mode for measuring flow parameters with magnetization inversion at the noise level
Davydov V. V.
1, Goldberg A. A.
1, Davydov R. V.
1,2, Dudkin V. I.
31Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Alferov University, St.Petersburg, Russia
3Bonch-Bruevich St. Petersburg State University of Telecommunications, St. Petersburg, Russia
Email: davydov_vadim66@mail.ru, artemiy.goldberg@mail.ru, davydovroman@outlook.com, vidoodkin@mail.ru
The problems that arise when conducting experiments using flows of liquid media, as well as during technical measurements of their parameters in various fields of human activity, are considered. The need for new research in the field of nuclear magnetic resonance is substantiated, which involves the use of liquid media flows to solve complex scientific and technical problems in which the use of measuring instruments operating on other physical phenomena is impractical. A new method for forming the structure of the nutation line at the noise level from the flow of a liquid medium with magnetization inversion has been developed and the features of controlling the processes of formation of this structure have been established. Experimental studies were carried out and the adequacy of using this mode for measuring liquid flow q was proven. New coefficients are proposed in the Bloch equations, which describe the movement of three magnetization components (Mx', My' and Mz') in a nutation coil in a fluid flow in a strong inhomogeneous field. For various parameters B0 and q, the structures of nutation lines were calculated. The minimum value of magnetic field inhomogeneity has been established, taking into account q and the parameters of the current medium, which must be ensured in the nutation coil location sector to form the line structure at the noise level. Theoretical calculations are compared with experimental data. Keywords: fluid flow, magnetic field, nuclear magnetic resonance, nutation line, magnetization inversion, relaxation, magnetic field inhomogeneity, resonant frequency, line width, signal-to-noise ratio.
- V. Davydov, I. Gureeva, R. Davydov, V. Dudkin. Energies, 15 (2), 457 (2022). DOI: 10.3390/en15020457
- M. Gui, J. Shan, Y. Liu, P. Wu, Y. Liang, F. Zhang. Annals Nuclear Energy, 194, 110084 (2023). DOI: 10.1016/j.anucene.2023.110084
- Z. Zhang, H. Liu, T. Song, Q. Zhang, L. Yang, K. Bi. Annals Nuclear Energy, 165, 108766 (2022). DOI: 10.1016/j.anucene.2021.108766
- K. Safiullin, V. Kuzmin, A. Bogaychuk, A. Klochkov, M. Tagirov. J. Petroleum Sci. Eng., 210, 110010 (2022). DOI: 10.1016/j.petrol.2021.110010
- R.S. Kashaev, N.C. Kien, T.V. Tung, O.V. Kozelkov. J. Appl. Spectr., 86 (5), 890 (2019). DOI: 10.1007/s10812-019-00911-4
- A.I. Zhernovoi, A.A. Komlev, S.V. D'yachenko. Tech. Phys., 61 (2), 302 (2016). DOI: 10.1134/S1063784216020274
- S.V. D'yachenko, A.I. Zhernovoi. Tech. Phys., 61 (11), 1835 (2016). DOI: 10.1134/S1063784216120112
- V. Antonov, P. Efremov. Tech. Phys., 65 (9), 1446 (2020). DOI: 10.1134/S1063784220090042
- B. Gizatullin, M. Gafurov, F. Murzakhanov, C. Mattea, S. Stapf. Langmuir, 37 (22), 6783 (2021). DOI: 10.1021/acs.langmuir.1c00882
- K.T. O'Neill, L. Brancato, P.L. Stanwix, E.O. Fridjonsson, M.L. Johns. Chem. Eng. Sci., 202, 222 (2019). DOI: 10.1016/j.ces.2019.03.018
- M.Y. Marusina, B.A. Bazarov, P.A. Galaidin, M.P. Marusin, A.A. Silaev, E.Y. Zakemovskaya, Y.N. Mustafaev. Measurement Techiques, 57 (6), 580 (2014). DOI: 10.1007/s11018-014-0501-5
- V.V. Davydov, E.N. Velichko, V.I. Dudkin, A.Y. Karseev. Measurement Techniques, 57 (6), 684 (2014). DOI: 10.1007/s11018-014-0519-8
- V.V. Davydov, N.S. Myazin, R.V. Davydov. Measurement Techniques, 65 (6), 444 (2022). DOI: 10.1007/s11018-022-02103-7
- S. Srikanta, P. Ashok, K. Mritunjay. Flow Meas. Instrum., 66, 190 (2019). DOI: 10.1016/j.flowmeasinst.2019.03.008
- R.S. Kashaev, V.O. Kozelkova, G.A. Ovseenko, V.I. Karachin, O.V. Kozelkov. Measurement Techniques, 66 (5), 349 (2023). DOI: 10.1007/s11018-023-02234-5
- V.V. Davydov, N.S. Myazin, R.V. Davydov. Measurement Techniques, 65 (4), 279 (2022). DOI: 10.1007/s11018-022-02080-x
- V.V. Davydov, V.I. Dudkin, A.Y. Karseev. Russ. Phys. J., 58 (2), 146 (2015). DOI: 10.1007/s11182-015-0475-z
- V.V. Davydov, V.I. Dudkin. Tech. Phys., 61 (7), 1115 (2016). DOI: 10.1134/S1063784216070094
- M. Zargar, M.L. Johns, I.M. Aljindan, M.N. Noui-Mehidi, K.T. O'Neill. SPE Production \& Operation, 36 (2), 423 (2021). DOI: 10.2118/205351-PA
- A.I. Zhernovoi. Russ. Phys. J., 58 (1), 133 (2015). DOI: 10.1007/s11182-015-0472-2
- A. Leshe. Nuclear Induction (Veb Deustscher Verlag Der Wissenschaften, Berlin, 1963)
- A. Abragam. The Principles of Nuclear Magnetism (Qxford at the Clarendon Press, Oxford UK, 1961)
- F. Bloch, R.K. Wangsness. Phys. Rev., 78 (1), 82 (1950)
- B.A. Jacobsohn, R.K. Wangsness. Phys. Rev., 73 (9), 942 (1948)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.