Tatarinov D.A.1, Baranov A.V.1, Tsypkin A.N.2, Litvin A. P.1,3
1International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
2Research and Educational Center for Photonics and Optoinformatics, ITMO University, St. Petersburg, Russia
3School of Materials Science & Engineering, Jilin University, Changchun, China
Email: tatarinov@itmo.ru
Synthesizing perovskite nanostructures at room temperature via ligand-assisted reprecipitation method allows precise control of their shape and size. Additionally, doping with specific ions enables the production of additional photoluminescence bands, thereby providing opportunities for tuning their optical properties. Methods for the synthesis of organic-inorganic perovskite nanostructures with different morphologies at room temperature are presented. By selecting the type and ratio of ligands, perovskite nanocrystals and nanoplates with the chemical formula FAPbBr3 were synthesized. Postsynthetic treating pre-synthesized perovskite nanocrystals with the MnCl2 precursor at room temperature enabled the production of Mn2+:FAPbClxBr3-x nanocrystals with emission in two different spectral ranges. Keywords: perovskite nanocrystals, perovskite nanoplates, doping, manganese dichloride, photoluminescence.
- J.S. Manser, J.A. Christians, P.V. Kamat. Chem. Rev., 116 (21), 12956-13008 (2016). DOI: 10.1021/acs.chemrev.6b00136
- Z. Cao, F. Hu, C. Zhang, S. Zhu, M. Xiao, X. Wang. Adv. Photonics, 2 (5), 8-10 (2020). DOI: 10.1117/1.AP.2.5.054001
- A. Dey, J. Ye, A. De, E. Debroye, S.K. Ha, E. Bladt, A.S. Kshirsagar, Z. Wang, J. Yin, Y. Wang et al. ACS Nano., 15 (7), 10775-10981 (2021). DOI: 10.1021/acsnano.0c08903
- M. Liu, G.K. Grandhi, S. Matta, K. Mokurala, A. Litvin, S. Russo, P. Vivo. Adv. Photonics Res., 2 (3), 2000118 (2021). DOI: 10.1002/adpr.202000118
- Y. Li, X. Zhang, H. Huang, S.V. Kershaw, A.L. Rogach. Mater. Today, 32, 204-221 (2020). DOI: 10.1016/j.mattod.2019.06.007
- P. Tyagi, S.M. Arveson, W.A. Tisdale. J. Phys. Chem. Lett., 6 (10), 1911-1916 (2015). DOI: 10.1021/ACS.JPCLETT.5B00664/SUPPL_FILE/ JZ5B00664_SI_001.PDF
- Y. Bekenstein, B.A. Koscher, S.W. Eaton, P. Yang, A.P. Alivisatos. J. Am. Chem. Soc., 137 (51), 16008-16011 (2015). DOI: 10.1021/jacs.5b11199
- A.P. Litvin, I.V. Margaryan, W. Yin, X. Zhang, W. Zheng, A.L. Rogach. Adv. Opt. Mater., (2023). DOI: 10.1002/adom.202301001
- I. Levchuk, A. Osvet, X. Tang, M. Brandl, J.D. Perea, F. Hoegl, G.J. Matt, R. Hock, M. Batentschuk, C.J. Brabec. Nano Lett., 17 (5), 2765-2770 (2017). DOI: 10.1021/acs.nanolett.6b04781
- D.A. Tatarinov, A.V. Sokolova, I.D. Skurlov, D.V. Danilov, A.V. Koroleva, N.K. Kuzmenko, Y.A. Timkina, M.A. Baranov, E.V. Zhizhin, A.N. Tcypkin et al. J. Mater. Chem. C, 11, 5657-5666 (2023). DOI: 10.1039/D3TC00180F
- S. Kachhap, S. Singh, A.K. Singh, S.K. Singh. J. Mater. Chem. C, 10 (10), 3647-3676 (2022). DOI: 10.1039/D1TC05506B
- W. Liu, Q. Lin, H. Li, K. Wu, I. Robel, J.M. Pietryga, V.I. Klimov. J. Am. Chem. Soc., 138 (45), 14954-14961 (2016). DOI: 10.1021/jacs.6b08085
- M.C. De Siena, D.E. Sommer, S.E. Creutz, S.T. Dunham, D.R. Gamelin. Chem. Mater., 31 (18), 7711-7722 (2019). DOI: 10.1021/acs.chemmater.9b02646
- C. Zhao, J. Shi, H. Huang, Q. Zhao, X. Zhang, J. Yuan. Small Sci., 4 (1), (2024). DOI: 10.1002/smsc.202300132
- N.V. Tepliakov, A.V. Sokolova, D.A. Tatarinov, X.Zhang, W. Zheng, A.P. Litvin, A.L. Rogach. Nano Lett., 24 (11), 3347-3354 (2024). DOI: 10.1021/acs.nanolett.3c04881
- N. Ding, W. Xu, D. Zhou, Y. Ji, Y. Wang, R. Sun, X. Bai, J. Zhou, H. Song. Nano Energy., 78 105278 (2020). DOI: 10.1016/j.nanoen.2020.105278
- T. Qiao, D. Parobek, Y. Dong, E. Ha, D.H. Son. Nanoscale, 11 (12), 5247-5253 (2019). DOI: 10.1039/C8NR10439E
- S. Huang, B. Wang, Q. Zhang, Z. Li, A. Shan, L. Li. Adv. Opt. Mater., 6 (6), 1701106 (2018). DOI: 10.1002/adom.201701106
- X. Yuan, S. Ji, M.C. De Siena, L. Fei, Z. Zhao, Y. Wang, H. Li, J. Zhao, D.R. Gamelin. Chem. Mater., 29 (18), 8003-8011 (2017). DOI: 10.1021/acs.chemmater.7b03311
- D. Chen, G. Fang, X. Chen. ACS Appl. Mater. Interfaces, 9 (46), 40477-40487 (2017). DOI: 10.1021/acsami.7b14471
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.