Formation of cluster caesium ions in an electric field on a nanostructured rhenium surface
Bernatskii D. P.1, Pavlov V. G.1
1Ioffe Institute, St. Petersburg, Russia
Email: bernatskii@ms.ioffe.ru, vpavlov@ms.ioffe.ru
Using field desorption microscopy and time-of-flight mass analysis of ions formed during field desorption, it was shown that the adsorption of caesium atoms on the quasi-spherical nanostructured surface of a rhenium single crystal results in the formation of polyatomic cluster caesium ions (Cs+, Cs2+, Cs3+, Cs4+, Cs5+). The intensity of the electric field required for the desorption of caesium ions corresponds to the calculated values obtained in the image forces model for the field desorption of alkali metals. Polyatomic caesium clusters are formed at a higher desorbing electric field strength than monatomic ones, despite the fact that they have a lower ionization potential. This indicates a greater value of the binding energy of these clusters to the surface. It was found that the mass distribution of clusters during field desorption depends on the magnitude of the electric field strength. Keywords: cesium, rhenium, field desorption, clusters.
- L.A. Bolshov, A.P. Napartovich, A.G. Naumovets, A.G. Fedorus. UFN 122, 125 (1977). (in Russian)
- W.A. de Heer. Rev. Mod. Phys. 65, 3, 611 (1993)
- R. Zhang, A. Chutia, A.A. Sokol, D. Chadwick, R.A. Catlow. Phys. Chem. 23, 19329 (2021)
- A.E. Ieshkina, D.S. Kireeva, A.A. Tatarintseva, V.S. Chernysha, B.R. Senatulinb, E.A. Skryleva. Surf. Sci. 700, 121637 (2020)
- I. Boustani. Molecular Modelling and Synthesis of Nanomaterials. Springer Series in Materials Science. Cham, Switzerland (2021). 594 p
- Y. Suchorski. Field ion and field desorption microscopy: principles and applications. Springer-Verlag, Berlin (2015). 272 p
- E.V. Muller, T.T. Tsong. Polevaya ionnaya mikroskopiya, polevaya ionizatsiya i polevoe ispoarenie. Nauka, M. (1980). 218 s. (in Russian)
- P.J. Foster, R.E. Leckenby, E.J. Robins. J. Phys. B 2, 478 (1969)
- D.P. Bernatsky, V.G. Pavlov. Izv. RAN. Ser. fiz. 73, 5, 713 (2009). (in Russian)
- Dzh. Ren, S. Rangatan. Avtoionnaya mikroskopiya. Mir, M. (1971). 270 s. (in Russian)
- O.L. Golubev, V.N. Shrednik. ZhTF 72, 8, 109 (2002). (in Russian)
- D.P. Bernatskii, V.G. Pavlov. Phys. Low-Dim. Struct. 7, 93 (1997)
- J.A. Panitz. Prog. Surf. Sci. 4, 219 (1978)
- E.V. Klimenko, A.G. Naumovets. FTT 13, 1, 33 (1971(). (in Russian)
- A. Dalgarno. Adv. Phys. 11, 44, 281 (1962)
- E.V. Myuller. UFN LXXVII, 3, 481 (1962(). (in Russian)
- V.N. Shrednik, E.V. Snezhko. FTT 6, 11, 3409 (1964(). (in Russian)
- N.V. Egorov, E.P. Sheshin. Field Emission Electronics. Springer Series in Advanced Microelectronics 60 (2017). P. 36
- R. Schmidt, J. Gomer. Chem. Phys. 42, 10, 3573 (1965)
- D.P. Bernatsky, V.G. Pavlov. Fiziko-khimicheskiye aspekty izucheniya klasterov, nanostruktur i nanomaterialov. Mezhvuz. sb. nauch. tr. / Pod red. V.M. Samsonova, N.Yu. Sdobnyakova. Tver. gos. un-t, Tver 9, 89 (2017). (in Russian)
- V.V. Chaban, O.V. Prezhdo. J. Phys. Chem. A 120, 25, 4302 (2016)
- O.M. Braun, V.K. Medvedev. UFN 157, 631 (1989). (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.