Physics of the Solid State
Volumes and Issues
Effect of electron-beam Ti-Ta surface alloying on the mechanical properties and deformation behavior of the TiNi alloy in cyclic torsion tests
D'yachenko F. A. 1, Loban’ V. V.1, Semin V. O. 1, Chepelev D. V.1, Ostapenko M. G. 1, Meisner L. L. 1
1Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
Email: dfa@ispms.ru, slavalob357@gmail.com, lpfreedom14@gmail.com, danielchep@inbox.ru, artifakt@ispms.ru, llm@ispms.ru

PDF
The dependencies of changes in the mechanical properties and deformation behavior of the TiNi alloy with synthesized Ti-Ni-Ta-based surface alloys with a thickness of ~ 1-2 μm were investigated in cyclic torsion tests. The synthesis of surface alloys was carried out by alternating the operations of deposition of a Ti70Ta30 and Ti60Ta40 (at. %) alloying film and liquid-phase mixing of the film/substrate using a pulsed low-energy high-current electron-beam. It was found that electron-beam synthesis leads to an increase in the stress of martensite shear tauM by ~ 10-20 MPa, in the stress of mechanical hysteresis width Δtau by ~ 40-75 MPa, as well as to the ability of the material to accumulate and recover inelastic strain by ~ 0.2% more compared to initial TiNi alloy. After cyclic torsion tests, subsequent heating of the modified samples to a temperature T~ 308± 1 K leads to the recovery of the accumulated residual strain γtotal. Keywords: Ti-Ni-Ta-based surface alloys, nickel titanium alloy, additive thin-film electron-beam synthesis, torsion tests, superelasticity, mechanical properties, scanning electron microscopy, surface morphology.
  1. N. Sabahi, W. Chen, C.-H. Wang, J.J. Kruzic, X. Li. JOM 72, 1229 (2020). DOI: 10.1007/s11837-020-04013-x
  2. J. Zhu, Q. Zeng, T. Fu. Corros. Rev. 37, 539 (2019). DOI: 10.1515/corrrev-2018-0104
  3. U. Roshan, R. Amarasinghe, N. Dayananda. J. Rob. Networking Artif. Life 5, 194 (2018). DOI: 10.2991/jrnal.2018.5.3.11
  4. M. Mehrpouya, H.C. Bidsorkhi. Micro Nanosyst. 8, 79 (2016). DOI: 10.2174/1876402908666161102151453
  5. J.J. Mohd, M. Leary, A. Subic, M.A. Gibson. Mater. Des. 56, 1078 (2014). DOI: 10.1016/j.matdes.2013.11.084
  6. C. Yan, Q. Zeng, W. He, J. Zhu. Tribol. Int. 155, 106816 (2021). DOI: 10.1016/j.triboint.2020.106816
  7. S.N. Meisner, I.V. Vlasov, E.V. Yakovlev, S.V. Panin, L.L. Meisner, F.A. D'yachenko. Mater. Sci. Eng. A 740-741, 381 (2019). DOI: 10.1016/j.msea.2018.10.113
  8. A. Pequegnat, A. Michael, J. Wang, K. Lian, Y. Zhou, M.I. Khan. Mater. Sci. Eng. C 50, 367 (2015). DOI: 10.1016/j.msec.2015.01.085
  9. E.S. Marchenko, Yu.F. Yasenchuk, S.V. Gunther, G.A. Baigonakova, O.V. Kokorev, A.A. Shishelova, O.A. Fatyushina. Russ. Phys. J. 62, 1789 (2020). DOI: 10.1007/s11182-020-01907-w
  10. C.-W. Chi, Y.-L. Deng, J.-W. Lee, C.-P. Lin. J. Formosan Med. Associat. 116, 373 (2017). DOI: 10.1016/j.jfma.2016.07.003
  11. C. Park, S. Kim, H.-E. Kim, T.-S. Jang. Surf. Coat. Technol. 305, 139 (2016). DOI: 10.1016/j.surfcoat.2016.08.014
  12. P. Yiu, W. Diyatmika, N. Bonninghoff, Y.-C. Lu, B.-Z. Lai, J.P. Chu. J. Appl. Phys. 127, 030901 (2020). DOI: 10.1063/1.5122884
  13. H. Jia, F. Liu, Z. An, W. Li, G. Wang, J.P. Chu, J.S.C. Jang, Y. Gao, P.K. Liaw. Thin Solid Films 561, 2 (2014). DOI: 10.1016/j.tsf.2013.12.024
  14. C.M. Lee, J.P. Chu, W.Z. Chang, J.W. Lee, J.S.C. Jang, P.K. Liaw. Thin Solid Films 561, 33 (2014). DOI: 10.1016/j.tsf.2013.08.027
  15. S. Shabalovskaya, J. Anderegg, J. van Humbeeck. Acta Biomater. 4, 447 (2008). DOI: 10.1016/j.actbio.2008.01.013
  16. Patent N 2017137653/15(065731) RF, MPK A61L 27/06, B82B 1/00, C22C 45/10, A61L 31/18, C22C 45/04, C23C 28/00. Sposob sinteza rengenokontrastnogo poverkhnostnogo Ti-Ta-Ni splava s amorphnoj ili amorfo-nanokristallicheskoj strukturoj na podlozhke iz TiNi splava. L.L. Meisner, A.B. Markov, G.E. Ozur, V.P. Rotshtein, S.N. Meisner, E.V. Yakovlev, E.Yu. Gudimova, V.O. Semin, Patentoobladatel' IFPM SO RAN, ISE SO RAN. Opubl. 11.04.18. (in Russian)
  17. L.L. Meisner, A.B. Markov, V.P. Rotshtein, G.E. Ozur, S.N. Meisner, E.V. Yakovlev, V.O. Semin, Yu.P. Mironov, T.M. Poletika, S.L. Girsova, D.A. Shepel. J. Alloys Compd. 730, 376 (2018). DOI: 10.1016/j.jallcom.2017.09.238
  18. S.N. Meisner, E.V. Yakovlev, V.O. Semin, L.L. Meisner, V.P. Rotshtein, A.A. Neiman, F. D'yachenko. Appl. Surf. Sci. 437, 217 (2018). DOI: 10.1016/j.apsusc.2017.12.107
  19. F.A. D'yachenko, V.O. Semin, M.G. Ostapenko, L.L. Meisner. Phys. Solid State 65, 593 (2023). DOI: 10.21883/PSS.2023.04.56000.24
  20. M.G. Ostapenko, V.O. Semin, L.L. Meisner, F.A. D'yachenko, S.N. Meisner, E.M. Oks, K.P. Savkin, A.B. Markov, E.V. Yakovlev, S.I. Yuzhakova, D.V. Chepelev, V.V. Loban'. Russ. Phys. J. 66, 503 (2023). DOI: 10.1007/s11182-023-02968-3
  21. G.E. Ozur, D.I. Proskurovsky. Plasma Phys. Rep., 44, 18 (2018). DOI: 10.1134/S1063780X18010130
  22. A.B. Markov, A.V. Mikov, G.E. Ozur, A.G. Padei. Instrum. Exp. Tech., 54, 862 (2011). DOI: 10.1134/S0020441211050149
  23. GOST 3565-80 Metally. Metod ispytanij na kruchenie. Izd-vo standartov/ (1980). 17 p. (in Russian)
  24. Yu.V. Milman. J. Phys. D 41, 074013 (2008). DOI: 10.1088/0022-3727/41/7/074013

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru