Physics of the Solid State
Volumes and Issues
Investigation of the interlayer surface of p-Bi2-xSbxTe3 films of topological thermoelectrics by scanning tunneling spectroscopy and microscopy
Lukyanova L. N. 1, Makarenko I. V. 1, Usov O. A. 1, Danilov V. A. 1
1Ioffe Institute, St. Petersburg, Russia
Email: lidia.lukyanova@mail.ioffe.ru, igor.makarenko@mail.ioffe.ru, oleg.usov@mail.ioffe.ru, v.danilov@mail.ioffe.ru

PDF
The morphology of the interlayer van der Waals surface (0001) has been investigated by scanning tunneling microscopy in layered films of topological insulators p-Bi0.5Sb1.5Te3 and p-Bi2Te3 prepared by discrete evaporation. A systematization of the impurity and intrinsic defects arising in the film formation process were fulfilled. It is found that in the film of p-Bi0.5Sb1.5Te3 solid solution with low thermal conductivity, the density of tellurium vacancies VTe and the height distortions in the distribution of Te (1) atoms on the (0001) surface increase compared to p-Bi2Te3. Local characteristics of the surface electronic states of the Dirac fermions were determined by scanning tunneling spectroscopy. The Dirac point ED shifts to the top of the valence band in the p-Bi0.5Sb1.5Te3 film with high thermoelectric figure of merit. Despite the fact that the bulk films under investigation exhibit p-type conductivity, electrons are found on the surface of the films, as the Fermi level EF is located above the Dirac point ED. Fluctuations of the Dirac point energy Δ E_D/< E_D>, the valence band edge Δ E_V/< E_V>, and the energy of the surface defect levels Ep in p-Bi0.5Sb1.5Te3 films are reduced compared to p-Bi2Te3 films due to the variation of the density of states on the (0001) surface. The obtained values of the energy gap Eg in the studied films is higher than estimated by optical data due to the inversion the edges of the valence and conduction bands in topological insulators. Keywords: bismuth and antimony chalcogenides, layered films, surface defects, surface fermion concentration, topological insulator.
  1. Modules, Systems, and Applications in Thermoelectrics / Ed. D.M. Rowe. CRC Press, Boca Raton (2012)
  2. M.J. Gilbert. Commun. Phys. 4, 1, 70 (2021)
  3. J. Heremans, R. Cava, N. Samarth. Nature Rev. Mater. 2, 10, 17049 (2017)
  4. M.Z. Hasan, C.L. Kane. Rev. Mod. Phys. 82, 4, 3045 (2010)
  5. Y.L. Chen, J.G. Analytis, J.H. Chu, Z.K. Liu, S.K. Mo, X.L. Qi, H.J. Zhang, H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.X. Shen. Science. 325, 5937, 178 (2009)
  6. J. Zhang, C.-Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang, X. Chen, Q.-K. Xue, X. Ma, Y. Wang. Nature Commun. 2, 1, 574 (2011)
  7. T. Knispel, W. Jolie, N. Borgwardt, J. Lux, Z. Wang, Y. Ando, A. Rosch, T. Michely, M. Gruninger. Phys. Rev. B 96, 19, 195135 (2017)
  8. A.A. Taskin, Z. Ren, S. Sasaki, K. Segawa, Y. Ando. Phys. Rev. Lett. 107, 1, 016801 (2011)
  9. Y. Ando. J. Phys. Soc. Jpn. 82, 10, 102001 (2013)
  10. H. Nam, Y. Xu, I. Miotkowski, J. Tian, Y.P. Chen, C. Liu, C.K. Shih. J. Phys. Chem. Solids 128, 251 (2019)
  11. Z. Alpichshev, J.G. Analytis, J.-H. Chu, I.R. Fisher, Y.L. Chen, Z.X. Shen, A. Fang, A. Kapitulnik. Phys. Rev. Lett. 104, 1, 016401 (2010)
  12. X. He, H. Li, L. Chen, K. Wu. Sci. Rep. 5, 1, 8830 (2015)
  13. R. Rejali, L. Farinacci, S. Otte. Phys. Rev. B 107, 3, 035406 (2023)
  14. L.N. Lukyanova, Y.A. Boikov, O.A. Usov, V.A. Danilov, I.V. Makarenko, V.N. Petrov. Magnetochemistry 9, 6, 141 (2023)
  15. D.L. Medlin, Q.M. Ramasse, C.D. Spataru, N.Y.C. Yang. J. Appl. Phys. 2010, 108, 4, 043517
  16. H. Beidenkopf, P. Roushan, J. Seo, L. Gorman, I. Drozdov, Y.S. Hor, R.J. Cava, A. Yazdani. Nature Phys. 7, 12, 939 (2011)
  17. X. Chen, H.D. Zhou, A. Kiswandhi, I. Miotkowskii, Y.P. Chen, P.A. Sharma, A.L. Lima Sharma, M.A. Hekmaty, D. Smirnov, Z. Jiang. Appl. Phys. Let. 99, 26, 261912 (2011)
  18. P. Dutta, D. Bhoi, A. Midya, N. Khan, P. Mandal, S. Shanmukharao Samatham, V. Ganesan. Appl. Phys. Lett. 100, 25, 251912 (2012)
  19. W. Ko, I. Jeon, H.W. Kim, H. Kwon, S.-J. Kahng, J. Park, J.S. Kim, S.W. Hwang, H. Suh. Sci. Rep. 3, 1, 2656 (2013)
  20. S. Jia, H. Beidenkopf, I. Drozdov, M.K. Fuccillo, J. Seo, J. Xiong, N.P. Ong, A. Yazdani. Phys. Rev. B 86, 16, 165119 (2012)
  21. T. Zhu, L. Hu, X. Zhao, J. He. Adv. Sci. 3, 7, 1600004 (2016)
  22. J.C. Slater. J. Chem. Phys. 41, 10, 3199 (1964)
  23. D. Bessas, I. Sergueev, H.-C. Wille, J. Person, D. Ebling, R.P. Hermann. Phys. Rev. B 86, 22, 224301 (2012)
  24. L.N. Lukyanova, I.V. Makarenko, O.A. Usov, P.A. Dementev. Semicond. Sci. Technol., 33, 5, 055001 (2018)
  25. M. Chen, J. Peng, H. Zhang, L. Wang, K. He, X. Ma, Q. Xue. Appl. Phys. Lett. 101, 8, 081603 (2012)
  26. C. Wagner, R. Franke, T. Fritz. Phys. Rev. B 75, 23, 235432 (2007)
  27. J.G. Austin, A. Sheard. J. Electron. Control 3, 2, 236 (1957)
  28. S.Y. Matsushita, K. Ichimura, K.K. Huynh, K. Tanigaki. Phys. Rev. Mater. 5, 1, 014205 (2021)
  29. I.V. Korobeinikov, N.V. Morozova, L.N. Lukyanova, O.A. Usov, S.V. Ovsyannikov. Semiconductors 53, 6, 732 (2019)
  30. Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M.Z. Hasan, Y.P. Chen. Nat. Phys. 10, 12, 956 (2014)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru