Fabrication of polymer microsphere-based whispering gallery mode microcavities of various sizes incorporating Ag-In-S quantum dots
Khorkina S. A.1, Tkach A. P.
1, Maleeva K. A.
1, Bogdanov K. V.1
1International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
Email: kirw.bog@gmail.com
The presented methodology describes the fabrication of active spherical microresonator structures with whispering gallery modes, based on polystyrene microspheres and AgInS2 quantum dots. These microresonators were obtained through electrostatic layer-by-layer deposition in aqueous suspensions. The ability to precisely tune the luminescent response of the active microresonators by adjusting the size of the polystyrene microsphere template is demonstrated. This size-dependent tunability of the optical properties makes these structures highly promising for integration into sensor devices, where optimized performance can be achieved through tailored resonator design. Keywords: whispering gallery modes, quantum dots, layer-by-layer deposition, microresonators.
- N. Toropov, G. Cabello, M.P. Serrano, R.R. Gutha, M. Rafti, F. Vollmer. Light Sci. Appl., 10 1), 42 (2021). DOI: 10.1038/s41377-021-00471-3
- D. Venkatakrishnarao, E.A. Mamonov, T.V. Murzina, R. Chandrasekar. Adv. Opt. Mater., 6 (18), (2018). DOI: 10.1002/adom.201800343
- K.J. Vahala, Nature, 424 (6950), 839-846 (2003). DOI: 10.1038/nature01939
- D.M. Beggs, M.A. Kaliteevski, S. Brand, R.A. Abram, J. Mod. Opt., 51 (3), 437-446 (2004). DOI: 10.1080/09500340408235535
- F.Q. Mohammed, T.S. Mansoor, A.W. Abdulwahhab. Photonic Netw. Commun., 38 (2), 270-279 (2019). DOI: 10.1007/s11107-019-00855-x
- Y. Zhang, Q. Song, D. Zhao, X. Tang, Y. Zhang, Z. Liu, L. Yuan. Opt. Laser Technol., 159 108955 (2023). DOI: 10.1016/j.optlastec.2022.108955
- A. Cholasettyhalli Dakshinamurthy, T.K. Das, P. Ilaiyaraja, C. Sudakar. Front. Mater., 6 (2019). DOI: 10.3389/fmats.2019.00282
- X. Wang, H. Li, Y. Wu, Z. Xu, H. Fu. J. Am. Chem. Soc., 136 (47), 16602-16608 (2014). DOI: 10.1021/ja5088503
- J. Zhao, Y. Yan, C. Wei, W. Zhang, Z. Gao, Y.S. Zhao. Nano Lett., 18 (2), 1241-1245 (2018). DOI: 10.1021/acs.nanolett.7b04834
- Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, R. Li. ACS Nano, 12 (6), 5923-5931 (2018). DOI: 10.1021/acsnano.8b02143
- S.I. Shopova, G. Farca, A.T. Rosenberger, W.M.S. Wickramanayake, N.A. Kotov, Appl. Phys. Lett., 85 (25), 6101-6103 (2004). DOI: 10.1063/1.1841459
- D.E. Gomez, I. Pastoriza-Santos, P. Mulvaney. Small, 1 (2), 238-241 (2005). DOI: 10.1002/smll.200400019
- S.R. Thomas, C.-W. Chen, M. Date, Y.-C. Wang, H.-W. Tsai, Z.M. Wang, Y.-L. Chueh. RSC Adv., 6 (65), 60643-60656 (2016). DOI: 10.1039/C6RA05502H
- H. Zhong, Z. Bai, B. Zou. J. Phys. Chem. Lett., 3 (21), 3167-3175 (2012). DOI: 10.1021/jz301345x
- W.M. Girma, M.Z. Fahmi, A. Permadi, M.A. Abate, J.-Y. Chang. J. Mater. Chem. B, 5 (31), 6193-6216 (2017). DOI: 10.1039/C7TB01156C
- A. Raevskaya, V. Lesnyak, D. Haubold, V. Dzhagan, O. Stroyuk, N. Gaponik, D.R.T. Zahn, A. Eychmuller. J. Phys. Chem. C, 121 (16), 9032-9042 (2017). DOI: 10.1021/acs.jpcc.7b00849
- V. Kuznetsova, A. Tkach, S. Cherevkov, A. Sokolova, Y. Gromova, V. Osipova, M. Baranov, V. Ugolkov, A. Fedorov, A. Baranov. Nanomaterials, 10 (8), 1569 (2020). DOI: 10.3390/nano10081569
- M.D. Regulacio, K.Y. Win, S.L. Lo, S.-Y. Zhang, X. Zhang, S. Wang, M.-Y. Han, Y. Zheng. Nanoscale, 5 (6), 2322 (2013). DOI: 10.1039/c3nr34159c
- H.T. Beier, G.L. Cote, K.E. Meissner. Ann. Biomed. Eng., 37 (10), 1974-1983 (2009). DOI: 10.1007/s10439-009-9713-2
- H.T. Beier, G.L. Cote, K.E. Meissner. J. Opt. Soc. Am. B, 27 (3), 536 (2010). DOI: 10.1364/JOSAB.27.000536
- S. Pang, R.E. Beckham, K.E. Meissner. Appl. Phys. Lett., 92 (22), (2008). DOI: 10.1063/1.2937209
- M. Charlebois, A. Paquet, L.S. Verret, K. Boissinot, M. Boissinot, M.G. Bergeron, C.N. Allen. Nanoscale Res. Lett., 5 (3), 524-532 (2010). DOI: 10.1007/s11671-010-9541-1
- V. Kuznetsova, V. Osipova, A. Tkach, M. Miropoltsev, D. Kurshanov, A. Sokolova, S. Cherevkov, V. Zakharov, A. Fedorov, A. Baranov et al. Nanomaterials, 11 (1), 109 (2021). DOI: 10.3390/nano11010109
- A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, G.C. Righini. Laser Photon. Rev., 4 (3), 457-482 (2010). DOI: 10.1002/lpor.200910016
- C.C. Lam, P.T. Leung, K. Young. J. Opt. Soc. Am. B, 9 (9), 1585 (1992). DOI: 10.1364/JOSAB.9.001585
- N. Sultanova, S. Kasarova, I. Nikolov. Acta Phys. Pol. A, 116 (4), 585-587 (2009). DOI: 10.12693/APhysPolA.116.585
- W.W. Wong, C. Jagadish, H.H. Tan. IEEE J. Quantum Electron., 58 (4), 1-18 (2022). DOI: 10.1109/JQE.2022.3151082
- S.A. Grudinkin, A.A. Dontsov, N.A. Feoktistov, M.A. Baranov, K.V. Bogdanov, N.S. Averkiev, V.G. Golubev. Semiconductors, 49 (10), 1369-1374 (2015). DOI: 10.1134/S1063782615100085
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.