Fabrication of polymer microsphere-based whispering gallery mode microcavities of various sizes incorporating Ag-In-S quantum dots
Khorkina S. A.1, Tkach A. P. 1, Maleeva K. A. 1, Bogdanov K. V.1
1International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
Email: kirw.bog@gmail.com

PDF
The presented methodology describes the fabrication of active spherical microresonator structures with whispering gallery modes, based on polystyrene microspheres and AgInS2 quantum dots. These microresonators were obtained through electrostatic layer-by-layer deposition in aqueous suspensions. The ability to precisely tune the luminescent response of the active microresonators by adjusting the size of the polystyrene microsphere template is demonstrated. This size-dependent tunability of the optical properties makes these structures highly promising for integration into sensor devices, where optimized performance can be achieved through tailored resonator design. Keywords: whispering gallery modes, quantum dots, layer-by-layer deposition, microresonators.
  1. N. Toropov, G. Cabello, M.P. Serrano, R.R. Gutha, M. Rafti, F. Vollmer. Light Sci. Appl., 10 1), 42 (2021). DOI: 10.1038/s41377-021-00471-3
  2. D. Venkatakrishnarao, E.A. Mamonov, T.V. Murzina, R. Chandrasekar. Adv. Opt. Mater., 6 (18), (2018). DOI: 10.1002/adom.201800343
  3. K.J. Vahala, Nature, 424 (6950), 839-846 (2003). DOI: 10.1038/nature01939
  4. D.M. Beggs, M.A. Kaliteevski, S. Brand, R.A. Abram, J. Mod. Opt., 51 (3), 437-446 (2004). DOI: 10.1080/09500340408235535
  5. F.Q. Mohammed, T.S. Mansoor, A.W. Abdulwahhab. Photonic Netw. Commun., 38 (2), 270-279 (2019). DOI: 10.1007/s11107-019-00855-x
  6. Y. Zhang, Q. Song, D. Zhao, X. Tang, Y. Zhang, Z. Liu, L. Yuan. Opt. Laser Technol., 159 108955 (2023). DOI: 10.1016/j.optlastec.2022.108955
  7. A. Cholasettyhalli Dakshinamurthy, T.K. Das, P. Ilaiyaraja, C. Sudakar. Front. Mater., 6 (2019). DOI: 10.3389/fmats.2019.00282
  8. X. Wang, H. Li, Y. Wu, Z. Xu, H. Fu. J. Am. Chem. Soc., 136 (47), 16602-16608 (2014). DOI: 10.1021/ja5088503
  9. J. Zhao, Y. Yan, C. Wei, W. Zhang, Z. Gao, Y.S. Zhao. Nano Lett., 18 (2), 1241-1245 (2018). DOI: 10.1021/acs.nanolett.7b04834
  10. Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, R. Li. ACS Nano, 12 (6), 5923-5931 (2018). DOI: 10.1021/acsnano.8b02143
  11. S.I. Shopova, G. Farca, A.T. Rosenberger, W.M.S. Wickramanayake, N.A. Kotov, Appl. Phys. Lett., 85 (25), 6101-6103 (2004). DOI: 10.1063/1.1841459
  12. D.E. Gomez, I. Pastoriza-Santos, P. Mulvaney. Small, 1 (2), 238-241 (2005). DOI: 10.1002/smll.200400019
  13. S.R. Thomas, C.-W. Chen, M. Date, Y.-C. Wang, H.-W. Tsai, Z.M. Wang, Y.-L. Chueh. RSC Adv., 6 (65), 60643-60656 (2016). DOI: 10.1039/C6RA05502H
  14. H. Zhong, Z. Bai, B. Zou. J. Phys. Chem. Lett., 3 (21), 3167-3175 (2012). DOI: 10.1021/jz301345x
  15. W.M. Girma, M.Z. Fahmi, A. Permadi, M.A. Abate, J.-Y. Chang. J. Mater. Chem. B, 5 (31), 6193-6216 (2017). DOI: 10.1039/C7TB01156C
  16. A. Raevskaya, V. Lesnyak, D. Haubold, V. Dzhagan, O. Stroyuk, N. Gaponik, D.R.T. Zahn, A. Eychmuller. J. Phys. Chem. C, 121 (16), 9032-9042 (2017). DOI: 10.1021/acs.jpcc.7b00849
  17. V. Kuznetsova, A. Tkach, S. Cherevkov, A. Sokolova, Y. Gromova, V. Osipova, M. Baranov, V. Ugolkov, A. Fedorov, A. Baranov. Nanomaterials, 10 (8), 1569 (2020). DOI: 10.3390/nano10081569
  18. M.D. Regulacio, K.Y. Win, S.L. Lo, S.-Y. Zhang, X. Zhang, S. Wang, M.-Y. Han, Y. Zheng. Nanoscale, 5 (6), 2322 (2013). DOI: 10.1039/c3nr34159c
  19. H.T. Beier, G.L. Cote, K.E. Meissner. Ann. Biomed. Eng., 37 (10), 1974-1983 (2009). DOI: 10.1007/s10439-009-9713-2
  20. H.T. Beier, G.L. Cote, K.E. Meissner. J. Opt. Soc. Am. B, 27 (3), 536 (2010). DOI: 10.1364/JOSAB.27.000536
  21. S. Pang, R.E. Beckham, K.E. Meissner. Appl. Phys. Lett., 92 (22), (2008). DOI: 10.1063/1.2937209
  22. M. Charlebois, A. Paquet, L.S. Verret, K. Boissinot, M. Boissinot, M.G. Bergeron, C.N. Allen. Nanoscale Res. Lett., 5 (3), 524-532 (2010). DOI: 10.1007/s11671-010-9541-1
  23. V. Kuznetsova, V. Osipova, A. Tkach, M. Miropoltsev, D. Kurshanov, A. Sokolova, S. Cherevkov, V. Zakharov, A. Fedorov, A. Baranov et al. Nanomaterials, 11 (1), 109 (2021). DOI: 10.3390/nano11010109
  24. A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, G.C. Righini. Laser Photon. Rev., 4 (3), 457-482 (2010). DOI: 10.1002/lpor.200910016
  25. C.C. Lam, P.T. Leung, K. Young. J. Opt. Soc. Am. B, 9 (9), 1585 (1992). DOI: 10.1364/JOSAB.9.001585
  26. N. Sultanova, S. Kasarova, I. Nikolov. Acta Phys. Pol. A, 116 (4), 585-587 (2009). DOI: 10.12693/APhysPolA.116.585
  27. W.W. Wong, C. Jagadish, H.H. Tan. IEEE J. Quantum Electron., 58 (4), 1-18 (2022). DOI: 10.1109/JQE.2022.3151082
  28. S.A. Grudinkin, A.A. Dontsov, N.A. Feoktistov, M.A. Baranov, K.V. Bogdanov, N.S. Averkiev, V.G. Golubev. Semiconductors, 49 (10), 1369-1374 (2015). DOI: 10.1134/S1063782615100085

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru