Features of the study of condensed matter using the nuclear magnetic resonance method based on relaxation times T1 and T2
V.V. Davydov1,2, Goldberg A. A. 1, Davydov R.V. 1,3, Dudkin V. I. 2, Yakusheva M.A.1
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Bonch-Bruevich St. Petersburg State University of Telecommunications, St. Petersburg, Russia
3Alferov University, St.Petersburg, Russia
Email: davydov_vadim66@mail.ru, artemiy.goldberg@mail.ru, davydovroman@outlook.com, vidoodkin@mail.ru

PDF
The features of determining the longitudinal T1 and transverse T2 relaxation times in NMR relaxometer designs for measuring the parameters of condensed matter for various applications, including biology and medicine, which are both in a stationary and current state, are considered. The advantages of using the modulation technique for recording the NMR signal for flow NMR flowmeters-relaxometers and small-sized NMR relaxometers for express monitoring of condensed matter in comparison with other methods and techniques are noted. It has been experimentally proven that the resulting relationship from the Bloch equations using approximations for determining T1 from the results of two measurements of NMR signal amplitudes or resonant frequencies has a number of restrictions on application for both flowing and stationary condensed matter. These limitations are associated both with the technique of recording the NMR signal and with the ability to generate NMR signals for different modulation frequencies of the H0 field, the amplitudes of which will differ from each other beyond the measurement error. The reasons that led to this discrepancy in the ratio for determining T1 and the limits of applicability of this ratio are determined. Based on experimental data, a study of the relationship for determining T1 was carried out and it was proven that for a number of cases using it is impossible to obtain the T1 value. In this case, NMR signals from a condensed medium are recorded in these cases, and the medium itself has relaxation times T1 and T2. The results we obtained make it possible to eliminate errors when conducting experiments when studying condensed matter using the NMR method, this is especially important in biology and medicine, where the requirements for measurement accuracy are increased. Keywords: nuclear magnetic resonance, liquid, condensed matter, modulation technique, NMR signal, nuclear magnetic flow meter-relaxometer, Bloch equations, relaxation times T1 and T2, modulation frequency, measurement error.
  1. V.V. Davydov, V.I. Dudkin, A.Yu. Karseev. Tech. Phys. Lett., 41 (4), 355 (2015). DOI: 10.1134/S1063785015040057
  2. A.I. Zhernovoi, A.A. Komlev, S.V. D'yachenko. Tech. Phys., 61 (2), 302 (2016). DOI: 10.1134/S1063784216020274
  3. B. Gizatullin, M. Gafurov, A. Vakhin, A. Rodionov, G. Mamin, S. Orlinskii, C. Mattea, S. Stapf. Energy Fuels, 33 (11), 10923 (2019). DOI: 10.1021/acs.energyfuels.9b03049
  4. M.Y. Marusina, E.A. Karaseva. Asian Pacific J. Cancer Prevention, 19 (10), 2771 (2018). DOI: 10.22034/APJCP.2018.19.10.2771
  5. M.Y. Marusina, B.A. Bazarov, P.A. Galaidin, A.A. Silaev, M.P. Marusin, E.Y. Zakemovskaya, A.G. Gilev, A.V. Alekseev. Measurement Techiques, 57 (5), 461 (2014). DOI: 10.1007/s11018-014-0478-0
  6. B. Gizatullin, M. Gafurov, A. Rodionov, S. Stapf, S. Orlinskii. Energy Fuels, 32, 11261 (2018). DOI: 10.1021/acs.energyfuels.8b02507
  7. M.Y. Marusina, B.A. Bazarov, P.A. Galaidin, M.P. Marusin, A.A. Silaev, E.Y. Zakemovskaya, Y.N. Mustafaev. Measurement Techiques, 57 (6), 580 (2014). DOI: 10.1007/s11018-014-0501-5
  8. K.T. O'Neill, L. Brancato, P.L. Stanwix, E.O. Fridjonsson, M.L. Johns. Chem. Eng. Sci., 202, 222 (2019). DOI: 10.1016/j.ces.2019.03.018
  9. V.V. Davydov. Opt. Spectr. 121 (1), 18 (2016). DOI: 10.1007/s11018-014-0501-5
  10. F. Deng, L. Xiao, M. Wang, et. al. Appl. Magn, Resonance, 47 (10), 1239 (2016). DOI: 10.1007/s00723-016-0832-2
  11. R.S. Kashaev, N.C. Kien, T.V. Tung, O.V. Kozelkov. J. Appl. Spectr., 86 (5), 890 (2019). DOI: 10.1007/s10812-019-00911-4
  12. M.A. Sadovnikova, F.F. Murzakhanov, G.V. Mamin, M.R. Gafurov. Energies, 15 (17), 6204 (2012). DOI: 10.3390/en15176204
  13. B. Gizatullin, M. Gafurov, F. Murzakhanov, C. Mattea, S. Stapf. Langmuir, 37 (22), 6783 (2021). DOI: 10.1021/acs.langmuir.1c00882
  14. A.I. Zhernovoi, S.V. D'yachenko. Tech. Phys., 60 (4), 595 (2015). DOI: 10.1134/S1063784215040325
  15. R. Davydov, V. Davydov, N. Myazin, V. Dudkin. Energies, 15 (5), 1748 (2022). DOI: 10.3390/en15051748
  16. S.V. D'yachenko, A.I. Zhernovoi. Tech. Phys., 61 (12), 1835 (2016). DOI: 10.1134/S1063784216120112
  17. V.V. Davydov, E.N. Velichko, V.I. Dudkin, A.Y. Karseev. Measurement Techniques, 57 (6), 684 (2014). DOI: 10.1007/s11018-014-0519-8
  18. R.S. Kashaev, V.O. Kozelkova, G.A. Ovseenko, V.I. Karachin, O.V. Kozelkov. Measurement Techniques, 66 (5), 349 (2023). DOI: 10.1007/s11018-023-02234-5
  19. F. Deng, C. Xiong, S. Chen. Petroleum Exploration and Development, 47, 855 (2020). DOI: 10.11698/PED.2020.04.17
  20. R. Eremina, A. Gippius, M. Gafurov. Appl. Magnetic Resonance, 54 (4-5), 435 (2023). DOI: 10.1007/s00723-023-01543-w
  21. L. Giulotto, G. Lanzi, L. Tosca. J. Chem. Phys., 24, 632 (1956)
  22. V.V. Davydov, V.I. Dudkin, A.Y. Karseev. Instrum. Experiment. Techniq., 58 (6), 787 (2015). DOI: 10.1134/S0020441215060056
  23. V.V. Davydov, V.I. Dudkin, D.I. Nikolaev, A.V. Moroz, R.V. Davydov. J. Commun. Technol. Electron., 66 (10), 1189 (2021). DOI: 10.1134/S1064226921070020
  24. M. Zargar, M.L. Johns, I.M. Aljindan, M.N. Noui-Mehidi, K.T. O'Neill. SPE Production Operation, 36 (2), 423 (2021). DOI: 10.2118/205351-PA
  25. P. Fouilloux, A. Assifaoui, A. Rachocki, T. Karbowiak, P.R. Bodart. Intern. J. Biolog. Macromolecules, 253, 126307 (2023). DOI: 10.1016/j.ijbiomac.2023.126307
  26. G. Cao, S. Gao, B. Xiong. Scientific Reports, 13 (1), 4558 (2023). DOI: 10.1038/s41598-023-31644-2
  27. A. Leshe. Nuclear Induction (Veb Deustscher Verlag Der Wissenschaften, Berlin, 1963), 864 p
  28. A. Abragam. The Principles of Nuclear Magnetism (Qxford at the Clarendon Press, Oxford UK, 1961), 646 p
  29. B.A. Jacobsohn, R.K. Wangsness. Phys. Rev., 73 (9), 942 (1948)
  30. G. Chiarotti, G. Cristiani, L. Giulotto, G. Lanzi. II Nuovo Cimento, 12 (4), 519 (1954).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru