Diamond nanoparticles as a contrast agent for MRI
Chizhikova A. S. 1, Yudina E. B. 1, Panich A. M.2, Salti M.3, Kulvelis Yu. V. 4, Shames A. I.2, Prager O.5, Swissa E.5, Aleksenskii A. E. 1, Vul' A.Y. 1
1Ioffe Institute, St. Petersburg, Russia
2Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
3Brain Imaging Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
4Konstantinov Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
5Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Email: chizhikova@mail.ioffe.ru, yudina@mail.ioffe.ru, pan@bgu.ac.il, saltim@post.bgu.ac.il, kulvelis_yv@pnpi.nrcki.ru, sham@bgu.ac.il, pragero@bgu.ac.il, swissev@gmail.com, blin@mail.ioffe.ru, AlexanderVul@mail.ioffe.ru

PDF
The efficiency of detonation nanodiamonds with a surface modified with manganese (ND-Mn) and gadolinium (ND-Gd) ions in application as contrast agents for magnetic resonance imaging is studied. The use of polyvinylpyrrolidone as a stabilizing agent prevents the agglomeration of particles in saline solution. According to the method of nuclear magnetic resonance, the ND-Mn and ND-Gd particles in saline hydrosols increase the rates of spin-lattice and spin-spin relaxation of protons in the hydrosol. Keywords: magnetic resonance imaging, nuclear magnetic resonance, detonation nanodiamonds, gadolinium, manganese.
  1. S. Aime, W. Dastr\`u, S.G. Crich, E. Gianolio, V. Mainero. Peptide Sci., 66, 419 (2002). DOI: 10.1002/bip.10357
  2. O.U. Akakuru, M.Z. Iqbal, M. Saeed, C. Liu, T. Paunesku, G. Woloschak, N.S. Hosmane, A. Wu. Bioconjugate Chem., 30, 2264 (2019). DOI: 10.1021/acs.bioconjchem.9b00499
  3. G. Bolles, M.V. Spampinato. Magnetic Resonance Contrast Agents for Neuroradiology. In Handbook of Neuro-Oncology Neuroimaging (Elsevier, 2016), p. 183-192
  4. P. Caravan, J.J. Ellison, T.J. McMurry, R.B. Lauffer. Chem. Rev., 99, 2293 (1999). DOI: 10.1021/cr980440x
  5. J.O.S. Cleary, A.R. Guimaraes. Magnetic Resonance Imaging. In Pathobiology of Human Disease (Elsevier, 2014), p. 3987-4004
  6. M.P. Lowe. Austral. J. Chem., 55, 551 (2002). DOI: 10.1071/CH02172
  7. M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, H.-J. Weinmann. Investigative Radiology, 40, 715 (2005). DOI: 10.1097/01.rli.0000184756.66360.d3
  8. G.-P. Yan, L. Robinson, P. Hogg. Radiography, 13, e5 (2007). DOI: 10.1016/j.radi.2006.07.005
  9. J. Wahsner, E.M. Gale, A. Rodri guez-Rodri guez, P. Caravan. Chem. Rev., 119, 957 (2019). DOI: 10.1021/acs.chemrev.8b00363
  10. S. Garifo, D. Stanicki, G. Ayata, R.N. Muller, S. Laurent. Frontiers Mater. Sci., 15, 334 (2021). DOI: 10.1007/s11706-021-0567-3
  11. T. Tegafaw, S. Liu, M.Y. Ahmad, A.K. Ali Al Saidi, D. Zhao, Y. Liu, H. Yue, S.-W. Nam, Y. Chang, G.H. Lee. RSC Adv., 13, 32381 (2023). DOI: 10.1039/D3RA06837D
  12. J.-X. Qin, X.-G. Yang, C.-F. Lv, Y.-Z. Li, K.-K. Liu, J.-H. Zang, X. Yang, L. Dong, C.-X. Shan. Mater. Design, 210, 110091 (2021). DOI: 10.1016/j.matdes.2021.110091
  13. K.V. Purtov, V.S. Bondar, A.P. Puzyr. Dokl. Phys., 380, 411 (2001) (in Russian)
  14. R.Y. Yakovlev, I.I. Kulakova, G.A. Badun, G.V. Lisichkin, A.V. Valueva, N.G. Seleznev, N.B. Leonidov. Drug development \& registration 3, 60 (2016) (in Russian)
  15. R.Y. Yakovlev, P.G. Mingalev, N.B. Leonidov, G.V. Lisichkin. Khimiko-farmatsevticheskij zhurnal, 54, 29 (2020) (in Russian). DOI: 10.30906/0023-1134-2020-54-4-29-44 [R.Y. Yakovlev, P.G. Mingalev, N.B. Leonidov, G.V. Lisichkin. Pharm. Chem. J. 54, 4 (2020). DOI: 10.1007/s11094-020-02210-1]
  16. A.M. Schrand, L. Dai, J.J. Schlager, S.M. Hussain, E. Osawa. Diamond and Related Mater., 16, 2118 (2007). DOI: 10.1016/j.diamond.2007.07.020
  17. D. Ho (Ed.). Nanodiamonds: Applications in Biology and Nanoscale Medicine (Springer, NY., 2010)
  18. A.Ya. Vul', O.A. Shenderova (red.). Detonatsyonnye nanoalmazy. Tekhnologiya, struktura, svoistva i primeneniya (FTI im. A.F. Ioffe, SPb, 2016) (in Russian)
  19. Y. Yuan, Y. Chen, J.-H. Liu, H. Wang, Y. Liu. Diamond and Related Mater., 18, 95 (2009). DOI: 10.1016/j.diamond.2008.10.031
  20. E. Perevedentseva, Y.-C. Lin, M. Jani, C.-L. Cheng. Nanomedicine, 8, 2041 (2013). DOI: 10.2217/nnm.13.183
  21. R. Rai, S. Alwani, B. Khan, R. Viswas Solomon, S. Vuong, E.S. Krol, H. Fonge, I. Badea. Diamond and Related Materials, 137, 110071 (2023). DOI: 10.1016/j.diamond.2023.110071
  22. B.-R. Lin, C.-H. Chen, C.H. Chang, S. Kunuku, T.-Y. Chen, T.-Y. Hsiao, H.-K. Yu, Y.-J. Chang, L.-C. Liao, F.-H. Chen, H. Niu, C.-P. Lee. J. Phys. D: Appl. Phys., 52, 505402 (2019). DOI: 10.1088/1361-6463/ab41e8
  23. B.R. Lin, C.-H. Chen, S. Kunuku, T.-Y. Chen, T.-Y. Hsiao, H. Niu, C.-P. Lee. Scientific Reports, 8, 7058 (2018). DOI: 10.1038/s41598-018-25380-1
  24. L.M. Manus, D.J. Mastarone, E.A. Waters, X.-Q. Zhang, E.A. Schultz-Sikma, K.W. MacRenaris, D. Ho, T.J. Meade. Nano Lett., 10, 484 (2010). DOI: 10.1021/nl903264h
  25. N. Rammohan, K.W. MacRenaris, L.K. Moore, G. Parigi, D.J. Mastarone, L.M. Manus, L.M. Lilley, A.T. Preslar, E.A. Waters, A. Filicko, C. Luchinat, D. Ho, T.J. Meade. Nano Lett., 16, 7551 (2016). DOI: 10.1021/acs.nanolett.6b03378
  26. T. Nakamura, T. Ohana, H. Yabuno, R. Kasai, T. Suzuki, T. Hasebe. Appl. Phys. Express, 6, 015001 (2013). DOI: 10.7567/APEX.6.015001
  27. K. Yano, T. Matsumoto, Y. Okamoto, K. Bito, N. Kurokawa, T. Hasebe, A. Hotta. ACS Appl. Nano Mater., 4, 1702 (2021). DOI: 10.1021/acsanm.0c03165
  28. S.-R. Qin, Q. Zhao, Z.-L. Cheng, D.-X. Zhang, K.-K. Zhang, L.-X. Su, H.-J. Fan, Y.-H. Wang, C.-X. Shan. Diamond and Related Materials, 91, 173 (2019). DOI: 10.1016/j.diamond.2018.11.015
  29. L. Zhao, A. Shiino, H. Qin, T. Kimura, N. Komatsu. J. Nanoscience and Nanotechnology, 15, 1076 (2015). DOI: 10.1166/jnn.2015.9738
  30. L. Zhao, T. Takimoto, M. Ito, N. Kitagawa, T. Kimura, N. Komatsu. Angewandte Chemie International Edition, 50, 1388 (2011). DOI: 10.1002/anie.201006310
  31. S. Sotoma, M. Shirakawa. Chem. Lett., 45, 697 (2016). DOI: 10.1246/cl.160250
  32. K. Yano, T. Matsumoto, Y. Okamoto, N. Kurokawa, T. Hasebe, A. Hotta. Nanotechnology, 32, 235102 (2021). DOI: 10.1088/1361-6528/abeb9c
  33. A.M. Panich, M. Salti, S.D. Goren, E.B. Yudina, A.E. Aleksenskii, A.Ya. Vul', A.I. Shames. J. Phys. Chem. C, 123, 2627 (2019). DOI: 10.1021/acs.jpcc.8b11655
  34. A.M. Panich, M. Salti, O. Prager, E. Swissa, Y.V. Kulvelis, E.B. Yudina, A.E. Aleksenskii, S.D. Goren, A.Ya. Vul', A.I. Shames. Magnetic Resonance in Medicine, 86, 935 (2021). DOI: 10.1002/mrm.28762
  35. A.M. Panich, A.I. Shames, S.D. Goren, E.B. Yudina, A.E. Aleksenskii, A.Ya. Vul'. Magnetic Resonance Materials in Physics, Biology and Medicine, 33, 885 (2020). DOI: 10.1007/s10334-020-00847-3
  36. T.C.-C. Hu, B. Waghorn, N. Yanasak, A.C. Silva. Manganese-Enhanced Magnetic Resonance Imaging: Applications to Preclinical Research. In Comprehensive Toxicology (Elsevier, 2010), p. 199-219
  37. C. Henoumont, M. Devreux, S. Laurent. Molecules, 28, 7275 (2023). DOI: 10.3390/molecules28217275
  38. M. Botta, F. Carniato, D. Esteban-Gomez, C. Platas-Iglesias, L. Tei. Future Medicinal Chem., 11, 1461 (2019). DOI: 10.4155/fmc-2018-0608
  39. T.W. Uselman, C.S. Medina, H.B. Gray, R.E. Jacobs, E.L. Bearer. NMR in Biomedicine, 35, e4675 (2022). DOI: 10.1002/nbm.4675
  40. B.-R. Lin, C.-C. Wang, C.-H. Chen, S. Kunuku, T.-Y. Hsiao, H.K. Yu, T.-Y. Chen, Y.-J. Chang, L.-C. Liao, C.-H. Chang, F.-H. Chen, H. Niu, C.-P. Lee. J. Appl. Phys., 126, 175301 (2019). DOI: 10.1063/1.5117342
  41. S. Kunuku, B.-R. Lin, C.-H. Chen, C.-H. Chang, T.-Y. Chen, T.-Y. Hsiao, H.-K. Yu, Y.J. Chang, L.-C. Liao, F.-H. Chen, R. Bogdanowicz, H. Niu. ACS Omega, 8, 4398 (2023). DOI: 10.1021/acsomega.2c08043
  42. W. Hou, T.B. Toh, L.N. Abdullah, T.W.Z. Yvonne, K.J. Lee, I. Guenther, E.K.-H. Chow. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 783 (2017). DOI: 10.1016/j.nano.2016.12.013
  43. A.M. Panich, A.I. Shames, A.E. Aleksenskii, E.B. Yudina, A.Ya. Vul'. Diamond and Related Mater., 119, 108590 (2021). DOI: 10.1016/j.diamond.2021.108590
  44. A.M. Panich, M. Salti, A.E. Aleksenskii, Y.V. Kulvelis, A. Chizhikova, A.Ya. Vul', A.I. Shames. Diamond and Related Mater., 131, 109591 (2023). DOI: 10.1016/j.diamond.2022.109591
  45. A.T. Dideikin, A.E. Aleksenskii, M.V. Baidakova, P.N. Brunkov, M. Brzhezinskaya, V.Yu. Davydov, V.S. Levitskii, S.V. Kidalov, Yu.A. Kukushkina, D.A. Kirilenko, V.V. Shnitov, A.V. Shvidchenko, B.V. Senkovskiy, M.S. Shestakov, A.Ya. Vul'. Carbon, 122, 737 (2017). DOI: 10.1016/j.carbon.2017.07.013
  46. Yu.V. Kulvelis, A.V. Shvidchenko, A.E. Aleksenskii, E.B. Yudina, V.T. Lebedev, M.S. Shestakov, A.T. Dideikin, L.O. Khozyaeva, A.I. Kuklin, Gy. Torok, M.I. Rulev, A.Ya. Vul'. Diamond and Related Mater., 87, 78 (2018). DOI: 10.1016/j.diamond.2018.05.012
  47. D.A. Friedrichsberg. Kurs kolloidnoj khimii: uchebnik dlya vuzov (Khimiya, SPb, 1995), 3-e izd. (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru