Baskakov E. B.
1, Supelnyak S. I.
1, Khmelenin D. N.
11National Research Center “Kurchatov Institute”, Moscow, Russia
Email: baskakov.ras@gmail.com
The matrices made of anodized aluminum oxide with a pore diameter of 40-140 nm and 60-210 nm are made by anodizing aluminum using a two-stage method. The distribution of oxide cells and pores of matrices by diameter is presented. It was found that an increase in the etching time led to an increase in the statistical maximum of the average pore diameter from 108 to 155 nm. It was found that an increase in the pore diameter during etching is accompanied by a preservation of the size of the oxide cells and a decrease in the average thickness of the cell walls. Sic nanostructures formed in the pores of the matrices and extending to an average depth of 120 nm were obtained by magnetron sputtering. It is assumed that a conductive channel is formed in the form of a thin SmS layer connecting SmS nanostructures and a barrier layer of anodized aluminum oxide. The resistance of SmS nanostructures in a matrix of anodized aluminum oxide with Ni metallization was measured, which amounted to 23 and 22 Ω. Keywords: anodized aluminum oxide, samarium sulfide, magnetron sputtering, nanostructures.
- J.W. Diggle, T.C. Downie, C.W. Goulding. Chem. Rev., 69, 385 (1969)
- G.E. Thompson, G.C. Wood. Treatise on Mater. Sci. Technol., 23, 250 (1983). DOI: 10.1016/B978-0-12-633670-2.50010-3
- G.D. Sulka. Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. In A.Eftekhari (ed.). Nanostructured Materials in Electrochemistry, Ch.1 (Wiley-VCH Verlag GmbH \& Co, 2008), DOI: 10.1002/9783527621507.ch1
- C.E. Alvey. The Mechanical Properties of Porous Anodic Oxide Films on Aluminium (The University of Manchester Institute of Science and Technology, Manchester, 1974)
- F. Keller, M.S. Hunter, D.L. Robinson. J. Electrochem. Society, 100 (9), 411 (1953). DOI: 10.1149/1.2781142
- J.P. O'sullivan, G.C. Wood. Proceed. Royal Society of London. A. Mathem. Phys. Sci., 317 (1531), 511 (1970). DOI: 10.1098/rspa.1970.0129
- H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura. Appl. Phys. Lett., 71 (19), 2770 (1997). DOI: 10.1063/1.120128
- S. Shingubara, Y. Murakami, K. Morimoto, T. Takahagi. Surf. Sci., 532, 317 (2003). DOI: 10.1016/S0039-6028(03)00433-3
- H.M.H. Masuda, M.S.M. Satoh. Jpn. J. Appl. Phys., 35 (1B), L126 (1996). DOI: 10.1143/JJAP.35.L126
- X.Y. Han, W.Z. Shen. J. Electroanalytical Chem., 655 (1), 56 (2011). DOI: 10.1016/j.jelechem.2011.02.008
- C. Cheng, A.H.W. Ngan. Nanotechnology, 24 (21), 215602 (2013). DOI: 10.1088/0957-4484/24/21/215602
- A.I. Vorobyova, E.A. Outkina. Russ. Microelectron., 34 (3), 147 (2005). DOI: 10.1007/s11180-005-0023-6
- S. Ono, M. Saito, H. Asoh. Electrochim. Acta, 51 (5), 827 (2005). DOI: 10.1016/j.electacta.2005.05.058
- J. Liang, H. Chik, J. Xu. IEEE J. Selected Topics in Quant. Electron., 8 (5), 998 (2002). DOI: 10.1109/JSTQE.2002.804238
- V.M. Fedosyuk. Izv. Nats. Akad. Nauk Belarusi. Ser. Fiz.-Tekh. Nauk, 66 (1), 37 (2021) (in Russian). DOI: 10.29235/1561-8358-2021-66-1-37-46
- H. Masuda, K. Fukuda. Science, 268 (5216), 1466 (1995). DOI: 10.1126/science.268.5216.1466
- K.X. Wang, Z. Yu, V. Liu, M.L. Brongersma, T.F. Jaramillo, S. Fan. Acs Photonics, 1 (3), 235 (2014). DOI: 10.1021/ph4001026
- S. McNamee, D. Wagner, E.M. Fiordaliso, D. Novog, R.R. LaPierre. Nanotechnology, 30 (7), 075401 (2018). DOI: 10.1088/1361-6528/aaf30a
- K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.H. Choi, A. Bogdanov, H.G. Park, Y. Kivshar. Science, 367 (6475), 288 (2020). DOI: 10.1126/science.aaz3985
- L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus. Phys. Rev. B, 53 (16), R10493 (1996). DOI: 10.1103/PhysRevB.53.R10493
- D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar. Appl. Phys. Lett., 83 (14), 2934 (2003). DOI: 10.1063/1.1616981
- A. Stranz, U. Sokmen, J. Kahler, A. Waag, E. Peiner. Sensors and Actuators A: Phys., 171 (1), 48 (2011). DOI: 10.1016/j.sna.2011.01.022
- X. Zou, X. Chen, H. Huang, Y. Xu, W. Duan. Nanoscale, 7 (19), 8776 (2015). DOI: 10.1039/c5nr01892g
- I.A. Smirnov, V.S. Oskotskii. Sov. Phys. Usp., 21, 117 (1978). DOI: 10.1070/PU1978v021n02ABEH005517
- M.M. Kazanin, V.V. Kaminskii, S.M. Solov'ev. Tech. Phys., 45 (5), 659 (2000). DOI: 10.1134/1.1259698
- A. Sousanis, P.F. Smet, D. Poelman. Materials, 10 (8), 953 (2017). DOI: 10.3390/ma10080953
- V.V. Kaminskii, S.A. Kazakov, M.V. Romanova, N.V. Sharenkova, M.A. Grevtsev. Phys. Solid State, 57 (2), 277 (2015). DOI: 10.1134/S106378341502016X
- A. Fahrenbruch, R. Bube. Fundamentals of Solar Cells. Photovoltaic Solar Energy Conversion (Academic Press, 1983)
- A.Yu. Stepanova, I.V. Zaporotskova, A.N. Belov. Vestn. Volgogr. Gos. Univ., 10 (5), 114 (2011) (in Russian)
- D.O. Il'in. Sintez i lyuminestsentnye svoistva nanoporistykh struktur anodirovannogo oksida alyuminiya (Ural. Fed. Univ., Ekaterinburg, 2015) (in Russian)
- V.I. Strelov, E.B. Baskakov, U.N. Bendryshev, V.M. Kanevskii. Crystallography Reports, 64 (2), 311 (2019). DOI: 10.1134/S1063774519020299
- V.G. Bamburov, O.V. Andreev, V.V. Ivanov, A.N. Voropai, A.V. Gorshkov, A.A. Polkovnikov, A.N. Bobylev. Dokl. Phys. Chem., 473 (2), 66 (2017)
- Z. Fang, Y. Wang, X. Peng, X. Liu, C. Zhen. Mater. Lett., 57 (26-27), 4187 (2003). DOI: 10.1016/S0167-577X(03)00287-8
- N. Nuntawong, M. Horprathum, P. Eiamchai, K. Wong-Ek, V. Patthanasettakul, P. Chindaudom. Vacuum, 84 (12), 1415 (2010). DOI: 10.1016/j.vacuum.2009.12.020
- W. Cheng, Y. Zhou, X. Guan, Y. Hui, S. Wang, X. Miao. Mater. Manufacturing Processes, 31 (2), 173 (2016). DOI: 10.1080/10426914.2015.1019130
- H.T. Dinh, N.V. Lushpa, K.V. Chernyakova, I.A. Vrublevsky. Dokl. BGUIR, 4 (122), 79 (2019) (in Russian)
- V.A. Moshnikov, E.N. Sokolova, Yu.M. Spivak. Izv. SPbGETU LETI, 2, 13 (2011) (in Russian)
- A.V. Matveev, A.V. Nartova, N.N. Sankova, A.G. Okunev. Microscopy Research and Technique, 87 (5), 991 (2024). DOI: 10.1002/jemt.24480
- A.V. Matveev, M.Yu. Mashukov, A.V. Nartova, A.G. Okunev. Tezisy dokladov Vosemnadtsatoi Natsional'noi konferentsii po iskusstvennomu intellektu s mezhdunarodnym uchastiem KII-2020 (M., 2020), p. 230 (in Russian)
- H. Masuda, K. Fukuda. Science, 268 (5216), 1466 (1995). DOI: 10.1126/science.268.5216.1466
- A.I. Vorobyova, E.A. Outkina, A.A. Khodin. Russ. Microelectron., 36 (6), 384 (2007). DOI: 10.1134/S1063739707060054
- E.O. Gordeeva, I.V. Roslyakov, D.I. Petukhov, T.B. Shatalova, K.S. Napolskii, A.I. Sadykov, T.A. Suchkova. Russ. J. Electrochem., 54 (11), 990 (2018). DOI: 10.1134/S1023193518130165
- E.B. Baskakov, V.I. Strelov. Crystallography Reports, 66 (6), 1078 (2021). DOI: 10.1134/S1063774521060055
- N.D. Tomashov, M.N. Tyukina, F.P. Zalivalov. Tolstosloinoe anodirovanie alyuminiya (Mashinostroenie, M., 1966) (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.