Formation of SmS nanostructures in anodized aluminum oxide matrix
Baskakov E. B. 1, Supelnyak S. I. 1, Khmelenin D. N. 1
1National Research Center “Kurchatov Institute”, Moscow, Russia
Email: baskakov.ras@gmail.com

PDF
The matrices made of anodized aluminum oxide with a pore diameter of 40-140 nm and 60-210 nm are made by anodizing aluminum using a two-stage method. The distribution of oxide cells and pores of matrices by diameter is presented. It was found that an increase in the etching time led to an increase in the statistical maximum of the average pore diameter from 108 to 155 nm. It was found that an increase in the pore diameter during etching is accompanied by a preservation of the size of the oxide cells and a decrease in the average thickness of the cell walls. Sic nanostructures formed in the pores of the matrices and extending to an average depth of 120 nm were obtained by magnetron sputtering. It is assumed that a conductive channel is formed in the form of a thin SmS layer connecting SmS nanostructures and a barrier layer of anodized aluminum oxide. The resistance of SmS nanostructures in a matrix of anodized aluminum oxide with Ni metallization was measured, which amounted to 23 and 22 Ω. Keywords: anodized aluminum oxide, samarium sulfide, magnetron sputtering, nanostructures.
  1. J.W. Diggle, T.C. Downie, C.W. Goulding. Chem. Rev., 69, 385 (1969)
  2. G.E. Thompson, G.C. Wood. Treatise on Mater. Sci. Technol., 23, 250 (1983). DOI: 10.1016/B978-0-12-633670-2.50010-3
  3. G.D. Sulka. Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. In A.Eftekhari (ed.). Nanostructured Materials in Electrochemistry, Ch.1 (Wiley-VCH Verlag GmbH \& Co, 2008), DOI: 10.1002/9783527621507.ch1
  4. C.E. Alvey. The Mechanical Properties of Porous Anodic Oxide Films on Aluminium (The University of Manchester Institute of Science and Technology, Manchester, 1974)
  5. F. Keller, M.S. Hunter, D.L. Robinson. J. Electrochem. Society, 100 (9), 411 (1953). DOI: 10.1149/1.2781142
  6. J.P. O'sullivan, G.C. Wood. Proceed. Royal Society of London. A. Mathem. Phys. Sci., 317 (1531), 511 (1970). DOI: 10.1098/rspa.1970.0129
  7. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura. Appl. Phys. Lett., 71 (19), 2770 (1997). DOI: 10.1063/1.120128
  8. S. Shingubara, Y. Murakami, K. Morimoto, T. Takahagi. Surf. Sci., 532, 317 (2003). DOI: 10.1016/S0039-6028(03)00433-3
  9. H.M.H. Masuda, M.S.M. Satoh. Jpn. J. Appl. Phys., 35 (1B), L126 (1996). DOI: 10.1143/JJAP.35.L126
  10. X.Y. Han, W.Z. Shen. J. Electroanalytical Chem., 655 (1), 56 (2011). DOI: 10.1016/j.jelechem.2011.02.008
  11. C. Cheng, A.H.W. Ngan. Nanotechnology, 24 (21), 215602 (2013). DOI: 10.1088/0957-4484/24/21/215602
  12. A.I. Vorobyova, E.A. Outkina. Russ. Microelectron., 34 (3), 147 (2005). DOI: 10.1007/s11180-005-0023-6
  13. S. Ono, M. Saito, H. Asoh. Electrochim. Acta, 51 (5), 827 (2005). DOI: 10.1016/j.electacta.2005.05.058
  14. J. Liang, H. Chik, J. Xu. IEEE J. Selected Topics in Quant. Electron., 8 (5), 998 (2002). DOI: 10.1109/JSTQE.2002.804238
  15. V.M. Fedosyuk. Izv. Nats. Akad. Nauk Belarusi. Ser. Fiz.-Tekh. Nauk, 66 (1), 37 (2021) (in Russian). DOI: 10.29235/1561-8358-2021-66-1-37-46
  16. H. Masuda, K. Fukuda. Science, 268 (5216), 1466 (1995). DOI: 10.1126/science.268.5216.1466
  17. K.X. Wang, Z. Yu, V. Liu, M.L. Brongersma, T.F. Jaramillo, S. Fan. Acs Photonics, 1 (3), 235 (2014). DOI: 10.1021/ph4001026
  18. S. McNamee, D. Wagner, E.M. Fiordaliso, D. Novog, R.R. LaPierre. Nanotechnology, 30 (7), 075401 (2018). DOI: 10.1088/1361-6528/aaf30a
  19. K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.H. Choi, A. Bogdanov, H.G. Park, Y. Kivshar. Science, 367 (6475), 288 (2020). DOI: 10.1126/science.aaz3985
  20. L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus. Phys. Rev. B, 53 (16), R10493 (1996). DOI: 10.1103/PhysRevB.53.R10493
  21. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar. Appl. Phys. Lett., 83 (14), 2934 (2003). DOI: 10.1063/1.1616981
  22. A. Stranz, U. Sokmen, J. Kahler, A. Waag, E. Peiner. Sensors and Actuators A: Phys., 171 (1), 48 (2011). DOI: 10.1016/j.sna.2011.01.022
  23. X. Zou, X. Chen, H. Huang, Y. Xu, W. Duan. Nanoscale, 7 (19), 8776 (2015). DOI: 10.1039/c5nr01892g
  24. I.A. Smirnov, V.S. Oskotskii. Sov. Phys. Usp., 21, 117 (1978). DOI: 10.1070/PU1978v021n02ABEH005517
  25. M.M. Kazanin, V.V. Kaminskii, S.M. Solov'ev. Tech. Phys., 45 (5), 659 (2000). DOI: 10.1134/1.1259698
  26. A. Sousanis, P.F. Smet, D. Poelman. Materials, 10 (8), 953 (2017). DOI: 10.3390/ma10080953
  27. V.V. Kaminskii, S.A. Kazakov, M.V. Romanova, N.V. Sharenkova, M.A. Grevtsev. Phys. Solid State, 57 (2), 277 (2015). DOI: 10.1134/S106378341502016X
  28. A. Fahrenbruch, R. Bube. Fundamentals of Solar Cells. Photovoltaic Solar Energy Conversion (Academic Press, 1983)
  29. A.Yu. Stepanova, I.V. Zaporotskova, A.N. Belov. Vestn. Volgogr. Gos. Univ., 10 (5), 114 (2011) (in Russian)
  30. D.O. Il'in. Sintez i lyuminestsentnye svoistva nanoporistykh struktur anodirovannogo oksida alyuminiya (Ural. Fed. Univ., Ekaterinburg, 2015) (in Russian)
  31. V.I. Strelov, E.B. Baskakov, U.N. Bendryshev, V.M. Kanevskii. Crystallography Reports, 64 (2), 311 (2019). DOI: 10.1134/S1063774519020299
  32. V.G. Bamburov, O.V. Andreev, V.V. Ivanov, A.N. Voropai, A.V. Gorshkov, A.A. Polkovnikov, A.N. Bobylev. Dokl. Phys. Chem., 473 (2), 66 (2017)
  33. Z. Fang, Y. Wang, X. Peng, X. Liu, C. Zhen. Mater. Lett., 57 (26-27), 4187 (2003). DOI: 10.1016/S0167-577X(03)00287-8
  34. N. Nuntawong, M. Horprathum, P. Eiamchai, K. Wong-Ek, V. Patthanasettakul, P. Chindaudom. Vacuum, 84 (12), 1415 (2010). DOI: 10.1016/j.vacuum.2009.12.020
  35. W. Cheng, Y. Zhou, X. Guan, Y. Hui, S. Wang, X. Miao. Mater. Manufacturing Processes, 31 (2), 173 (2016). DOI: 10.1080/10426914.2015.1019130
  36. H.T. Dinh, N.V. Lushpa, K.V. Chernyakova, I.A. Vrublevsky. Dokl. BGUIR, 4 (122), 79 (2019) (in Russian)
  37. V.A. Moshnikov, E.N. Sokolova, Yu.M. Spivak. Izv. SPbGETU LETI, 2, 13 (2011) (in Russian)
  38. A.V. Matveev, A.V. Nartova, N.N. Sankova, A.G. Okunev. Microscopy Research and Technique, 87 (5), 991 (2024). DOI: 10.1002/jemt.24480
  39. A.V. Matveev, M.Yu. Mashukov, A.V. Nartova, A.G. Okunev. Tezisy dokladov Vosemnadtsatoi Natsional'noi konferentsii po iskusstvennomu intellektu s mezhdunarodnym uchastiem KII-2020 (M., 2020), p. 230 (in Russian)
  40. H. Masuda, K. Fukuda. Science, 268 (5216), 1466 (1995). DOI: 10.1126/science.268.5216.1466
  41. A.I. Vorobyova, E.A. Outkina, A.A. Khodin. Russ. Microelectron., 36 (6), 384 (2007). DOI: 10.1134/S1063739707060054
  42. E.O. Gordeeva, I.V. Roslyakov, D.I. Petukhov, T.B. Shatalova, K.S. Napolskii, A.I. Sadykov, T.A. Suchkova. Russ. J. Electrochem., 54 (11), 990 (2018). DOI: 10.1134/S1023193518130165
  43. E.B. Baskakov, V.I. Strelov. Crystallography Reports, 66 (6), 1078 (2021). DOI: 10.1134/S1063774521060055
  44. N.D. Tomashov, M.N. Tyukina, F.P. Zalivalov. Tolstosloinoe anodirovanie alyuminiya (Mashinostroenie, M., 1966) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru