Vibrations anharmonism effect of solvent OH-groups on IR luminescent properties of semiconductor colloidal quantum dots of lead sulphide
Grevtseva I. G.
1, Ovchinnikov O.V.
1, Smirnov M. S.
1, Chirkov K. S.
1, Latyshev A. N.
11Voronezh State University, Voronezh, Russia
Email: grevtseva_ig@inbox.ru, ovchinnikov_o_v@rambler.ru, smirnov_m_s@mail.ru
The vibrations anharmonism effect of the OH-groups of solvent of the overlap integral of the donor luminescence spectrum KT PbS/2-MPA with the acceptor extinction spectrum (overtones of OH vibrations) showed the Förster radius R_0 = 0.4 nm. This value evidences the adsorption of solvent molecules on the QD interfaces during them dissolving in it. In this case, the approximation of the luminescence decay curves of KT PbS/2-MPA QDs demonstrates the greatest agreement with experimental data when the luminescence decay law takes into account the statistical distribution of the number of OH-groups of solvent molecules relative to the QDs. The obtained data indicate the implementation of a dipole-dipole mechanism of non-radiative transfer of electronic excitation energy from KT PbS/2-MPA QDs to the overtones of solvent OH-vibrations, located in the environing volume of QDs. Keywords: luminescence, quantum yield, luminescence decay time, non-radiative processes, quantum dot, lead sulfide.
- Yu Ma, Yu Zhang, W.W. Yu. J. Mater. Chem. C, 7, 13662 (2019). DOI: 10.1039/C9TC04065J
- H.M. Gil, T.W. Price, K. Chelani, J.-S.G. Bouillard, S.D.J. Calaminus, G.J. Stasiuk. iScience, 24 (3), 102189 (2021). DOI: 10.1016/j.isci.2021.102189
- M. Han, O. Karatum, S. Nizamoglu. ACS Appl. Mater. Interfaces, 14, 18, 20468 (2022). DOI: 10.1021/acsami.1c25009
- L. Seravalli. Microelectronic Engineering, 276, 111996 (2023). DOI: 10.1016/j.mee.2023.111996
- C.L. Phillips, A.J. Brash, M. Godsland, N.J. Martin, A. Foster, A. Tomlinson, R. Dost, N. Babazadeh, E.M. Sala, L. Wilson, J. Heffernan, M/S. Skolnick, A.M. Fox. Sci Rep., 14, 4450 (2024). DOI: 10.1038/s41598-024-55024-6
- A.A.H. Abdellatif, M.A. Younis, M. Alsharidah, O. Al Rugaie, H.M. Tawfeek. Challenges and Clinical Potential. Int. J. Nanomedicine, 17, 1951 (2022). DOI: 10.2147/IJN.S357980
- D. Pluta, H. Kuper, R.T. Graf, Ch. Wesemann, P. Rusch. Nanoscale Adv., 5, 5005 (2023). DOI: 10.1039/D3NA00404JJ [Zhou, F. Ma, K. Chen, W. Zhao, R. Yang, Ch. Qiao, H. Shen, W.-Sh. Su, M. Lu, Yu. Zheng, R. Zhang, L. Chena, S. Wang. Nanoscale Adv., 5, 3896 (2023) DOI: 10.1039/D3NA00251A]
- A. Olejniczak, R. Rich, Z. Gryczynski, B. Cichy. Nanoscale Horiz., 7, 63 (2022) DOI:10.39/D1NH00424G
- I.G. Grevtseva, K.S. Chirkov, O.V. Ovchinnikov, M.S. Smirnov. Inorganic Materials, 59 (10), 1045 (2023). DOI: 10.1134/S0020168523100047
- I.G. Grevtseva, O.V. Ovchinnikov, M. S.Smirnov, T.S. Kondratenko, V.N. Derepko, A.M.H. Hussein, N.E. Egorov, E.A. Vozgorkova. Opt. Spectrosc., 130 (12), 1910 (2022). DOI: 10.21883/OS.2022.12.54100.4106-22
- M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, A.I. Zvyagin, A.S. Perepelitsa, R.A. Ganeev. Opt. Spectrosc., 124 (5), 681 (2018). DOI: 10.1134/S0030400X18050211
- V.A. Krivenkov, P.S. Samokhvalov, P.A. Linkov, D.O. Solovyeva, G.E. Kotkovskii et al. SPIE, 9126, 91263 (2014). DOI: 10.1117/12.2057828
- J.E. Lewis, X.J. Jiang. Nanotechnology, 21, 455402 (2010). DOI: 10.1088/0957-4484/21/45/455402
- I. Fosse, S. Lal, A.N. Hossaini, I. Infante, A.J. Houtepen. J. Phys. Chem. C, 125, 23968 (2021). DOI: 10.1021/acs.jpcc.1c07464
- S. Aynehband, M. Mohammadi, K. Thorwarth, R. Hany, F.A. Nuesch, M.D. Rossell, R. Pauer, J.-M. Nunzi, A. Simchi. ACS Omega, 5 (25), 15746 (2020). DOI: 10.1021/acsomega.0c02319
- P. Papagiorgis, D. Tsokkou, K. Gahlot, L. Protesescu, A. Manoli, F. Hermerschmidt, C. Christodoulou, S.A. Choulis, M.V. Kovalenko, A. Othonos, G. Itskosl. J. Phys. Chem. C, 124 (50), 27848 (2020). DOI: 10.1021/acs.jpcc.0c09790
- M. Debayle, T. Marchandier, X. Xu, N. Lequeux, T. Pons. ACS Appl. Materials \& Interfaces, 11 (28), 25008 (2019). DOI: 10.1021/acsami.9b06194
- V.L. Ermolaev. Opt. Spectrosc., 125 (2), 256 (2018). DOI: 10.21883/OS.2018.08.46368.97-18
- E.B. Sveshnikova, V.L. Ermolaev. Opt. Spectrosc., 111 (1), 34 (2011). https://elibrary.ru/download/elibrary_16525621_ 62511575.pdf
- V.L. Ermolaev, E.B. Sveshnikova, E.N. Bodunov. Physics-Uspekhi, 39 (3), 261 (1996). DOI: 10.3367/UFNr.0166.199603c.0279
- V.L. Ermolaev, E.B. Sveshnikova, T.A. Shakhverdov. Rus. Chem. Rev., 44 (1), 48 (1975). https://www.uspkhim.ru/RCR2142pdf
- A. Aharoni, D. Oron, U. Banin, E. Rabani, J. Jortner. Phys. Rev. Lett., 100, 057404 (2008). DOI: 10.1103/PhysRevLett.100.057404
- Q. Wen, St.V. Kershaw, S. Kalytchuk, O. Zhovtiuk, C. Reckmeier. ACS Nano, 10 (4), 4301 (2016). DOI: 10.1021/acsnano.5b07852
- O.E. Semonin, J.C. Johnson, J.M. Luther, A.G. Midgett, A.J. Nozik, M.C. Beard. J. Phys. Chem. Lett., 1, 2445 (2010). DOI: 10.1021/jz100830r
- S.E. Lappi, B. Smith, S. Franzen. Spectrochim. Acta, Part A, 60, 2611 (2004). DOI: 10.1016/j.saa.2003.12.042
- S. Klingler, J. Hniopek, R. Stach, M. Schmitt, J. Popp. ACS Meas. Sci. Au, 2 (2), 157 (2022). DOI: 10.1021/acsmeasuresciau.1c00048
- B. Xue, J. Cao, D. Deng, J. Xia, J. Jin, Zh. Qian, Yu. Gu. J. Mater. Sci: Mater Med., 23, 723 (2012). DOI: 10.1007/s10856-012-4548-z
- S.I. Sadovnikov, A.I. Gusev. RSC Adv., 10, 40171 (2020). DOI: 10.1039/D0RA07853K
- H. Du, C. Chen, R. Krishnan, T.D. Krauss, J.M. Harbold, F.W. Wise, M.G. Thomas, J. Silcox. Nano Lett., 2 (11), 1321 (2002). DOI: 10.1021/nl025785g
- H. Liu, P. Guyot-Sionnest. J. Phys. Chem. C, 14 (35), 14860 (2010). DOI: 10.1021/jp105818e
- B.L. Wehrenberg, C. Wang, P. Guyet-Sionnest. J. Phys. Chem. B, 106, 10634 (2002). DOI: 10.1063/1.4917388
- P.S. Parfenov, A.P. Litvin, A.V. Baranov, E.V. Ushakova, A.V. Fedorov, A.V. Prudnikovb, M.V. Artemyev. Opt. Spectrosc., 112, 868 (2012). DOI: 10.1134/S0030400X12060136
- A.P. Litvin, P.S. Parfenov, E.V. Ushakova, A.L. Simoes Gamboa, A.V. Fedorov et al. J. Phys. Chem. C, 118 (35), 20721 (2014). DOI: 10.1021/jp507181k
- C. Cheng, J. Li, X. Chengb. J. Lumin., 188, 252 (2017). DOI: 10.1016/j.jlumin.2017.04.037
- E.V. Ushakova, A.P. Litvin, P.S. Parfenov, A.V. Fedorov, M. Artemyev, A.V. Prudnikau, I.D. Rukhlenko, A.V. Baranov. ACS Nano, 6 (10), 8913 (2012). DOI: 10.1021/nn3029106
- I. Grevtseva, T. Chevychelova, O. Ovchinnikov, M. Smirnov, T. Kondratenko, V. Khokhlov, A.I. Zvyagin, M. Astashkina, K. Chirkov. Optical and Quantum Electronics, 55 (5) (2023). DOI: 10.1007/s11082-023-04658-3
- M.S. Gaponenko, A.A. Lutich, N.A. Tolstik, A.A. Onushchenko, A.M. Malyarevich, E.P. Petrov, K.V. Yumashev. Phys. Rev. B, 82, 125320 (2010). DOI: 10.1103/PhysRevB.82.125320
- Dae Gwi Kim, T. Kuwabara, M. Nakayama. J. Lumin., 119-120, 214 (2006). DOI: 10.1016/j.jlumin.2005.12.033
- S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen. Opt. Mater. Express, 2, 1588 (2012). DOI: 10.1364/OME.2.001588
- F.W.B. van Leeuwen, B. Cornelissen, F. Caobelli, L. Evangelista, L. Rbah-Vidal, S. Del Vecchio, C. Xavier, J. Barbet, M. de Jong. EJNMMI Radiopharm. Chem., 2, 15 (2017). DOI: 10.1186/s41181-017-0034-8
- O. Ciocirlan, O. Iulian. J. Serb. Chem. Soc., 74 (3), 317 (2009). DOI: 10.2298/JSC0903317C
- L.V. Vu, S.C. Doanh, L.T. Nga, N.N. Long. e-J. Surf. Sci. Nanotech., 9, 494 (2011). DOI: 10.1380/ejssnt.2011.494
- P. Scherrer. Nachr. Ges. Wiss. Gott., 26, 98 (1918)
- W.W. Scanlon. J. Phys. Chem. Solids, 8, 423 (1959). DOI: 10.1016/0022-3697(59)90379-8
- I. Moreels, K. Lambert, D. Smeets, D. Muynck, T. Nollet, J.C. Martins, F. Vanhaecke, A. Vantomme, Ch. Delerue, G. Allan, Z. Hens. ACS Nano, 3 (10), 3023 (2009). DOI: 10.1021/nn900863a
- J.R. Caram, S.N. Bertram, H. Utzat, W.R. Hess, J.A. Carr, T.S. Bischof, A.P. Beyler, M.W.B. Wilson, M.G. Bawendi. Nano Lett., 16 (10), 6070 (2019). DOI:10.1021/acs.nanolett.6b02147
- S. Sadhu, M. Tachiya, A. Patra. J. Phys. Chem. C, 114 (6), 2842 (2010). DOI: 10.1021/jp912268m
- E.N. Bodunov, V.V. Danilov, A.S. Panfutova, A.L. Simoes Gamboa. Ann. Phys. (Berlin), 528 (3-4), 272 (2016). DOI: 10.1002/andp.201500350
- M.S. Smirnov. Opt. Spectrosc., 123 (5), 705 (2017). DOI: 10.1134/S0030400X17090284
- M. Tachiya. Chem. Phys. Lett., 33 (2), 289 (1975). DOI: 10.1016/0009-2614(75)80158-8
- F.G. Sanchez, C.C. Ruiz. J. Lumin., 69, 179 (1996). DOI: 10.1016/S0022-2313(96)00116-0
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.