Vibrations anharmonism effect of solvent OH-groups on IR luminescent properties of semiconductor colloidal quantum dots of lead sulphide
Grevtseva I. G. 1, Ovchinnikov O.V. 1, Smirnov M. S. 1, Chirkov K. S. 1, Latyshev A. N. 1
1Voronezh State University, Voronezh, Russia
Email: grevtseva_ig@inbox.ru, ovchinnikov_o_v@rambler.ru, smirnov_m_s@mail.ru

PDF
The vibrations anharmonism effect of the OH-groups of solvent of the overlap integral of the donor luminescence spectrum KT PbS/2-MPA with the acceptor extinction spectrum (overtones of OH vibrations) showed the Förster radius R_0 = 0.4 nm. This value evidences the adsorption of solvent molecules on the QD interfaces during them dissolving in it. In this case, the approximation of the luminescence decay curves of KT PbS/2-MPA QDs demonstrates the greatest agreement with experimental data when the luminescence decay law takes into account the statistical distribution of the number of OH-groups of solvent molecules relative to the QDs. The obtained data indicate the implementation of a dipole-dipole mechanism of non-radiative transfer of electronic excitation energy from KT PbS/2-MPA QDs to the overtones of solvent OH-vibrations, located in the environing volume of QDs. Keywords: luminescence, quantum yield, luminescence decay time, non-radiative processes, quantum dot, lead sulfide.
  1. Yu Ma, Yu Zhang, W.W. Yu. J. Mater. Chem. C, 7, 13662 (2019). DOI: 10.1039/C9TC04065J
  2. H.M. Gil, T.W. Price, K. Chelani, J.-S.G. Bouillard, S.D.J. Calaminus, G.J. Stasiuk. iScience, 24 (3), 102189 (2021). DOI: 10.1016/j.isci.2021.102189
  3. M. Han, O. Karatum, S. Nizamoglu. ACS Appl. Mater. Interfaces, 14, 18, 20468 (2022). DOI: 10.1021/acsami.1c25009
  4. L. Seravalli. Microelectronic Engineering, 276, 111996 (2023). DOI: 10.1016/j.mee.2023.111996
  5. C.L. Phillips, A.J. Brash, M. Godsland, N.J. Martin, A. Foster, A. Tomlinson, R. Dost, N. Babazadeh, E.M. Sala, L. Wilson, J. Heffernan, M/S. Skolnick, A.M. Fox. Sci Rep., 14, 4450 (2024). DOI: 10.1038/s41598-024-55024-6
  6. A.A.H. Abdellatif, M.A. Younis, M. Alsharidah, O. Al Rugaie, H.M. Tawfeek. Challenges and Clinical Potential. Int. J. Nanomedicine, 17, 1951 (2022). DOI: 10.2147/IJN.S357980
  7. D. Pluta, H. Kuper, R.T. Graf, Ch. Wesemann, P. Rusch. Nanoscale Adv., 5, 5005 (2023). DOI: 10.1039/D3NA00404JJ [Zhou, F. Ma, K. Chen, W. Zhao, R. Yang, Ch. Qiao, H. Shen, W.-Sh. Su, M. Lu, Yu. Zheng, R. Zhang, L. Chena, S. Wang. Nanoscale Adv., 5, 3896 (2023) DOI: 10.1039/D3NA00251A]
  8. A. Olejniczak, R. Rich, Z. Gryczynski, B. Cichy. Nanoscale Horiz., 7, 63 (2022) DOI:10.39/D1NH00424G
  9. I.G. Grevtseva, K.S. Chirkov, O.V. Ovchinnikov, M.S. Smirnov. Inorganic Materials, 59 (10), 1045 (2023). DOI: 10.1134/S0020168523100047
  10. I.G. Grevtseva, O.V. Ovchinnikov, M. S.Smirnov, T.S. Kondratenko, V.N. Derepko, A.M.H. Hussein, N.E. Egorov, E.A. Vozgorkova. Opt. Spectrosc., 130 (12), 1910 (2022). DOI: 10.21883/OS.2022.12.54100.4106-22
  11. M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, A.I. Zvyagin, A.S. Perepelitsa, R.A. Ganeev. Opt. Spectrosc., 124 (5), 681 (2018). DOI: 10.1134/S0030400X18050211
  12. V.A. Krivenkov, P.S. Samokhvalov, P.A. Linkov, D.O. Solovyeva, G.E. Kotkovskii et al. SPIE, 9126, 91263 (2014). DOI: 10.1117/12.2057828
  13. J.E. Lewis, X.J. Jiang. Nanotechnology, 21, 455402 (2010). DOI: 10.1088/0957-4484/21/45/455402
  14. I. Fosse, S. Lal, A.N. Hossaini, I. Infante, A.J. Houtepen. J. Phys. Chem. C, 125, 23968 (2021). DOI: 10.1021/acs.jpcc.1c07464
  15. S. Aynehband, M. Mohammadi, K. Thorwarth, R. Hany, F.A. Nuesch, M.D. Rossell, R. Pauer, J.-M. Nunzi, A. Simchi. ACS Omega, 5 (25), 15746 (2020). DOI: 10.1021/acsomega.0c02319
  16. P. Papagiorgis, D. Tsokkou, K. Gahlot, L. Protesescu, A. Manoli, F. Hermerschmidt, C. Christodoulou, S.A. Choulis, M.V. Kovalenko, A. Othonos, G. Itskosl. J. Phys. Chem. C, 124 (50), 27848 (2020). DOI: 10.1021/acs.jpcc.0c09790
  17. M. Debayle, T. Marchandier, X. Xu, N. Lequeux, T. Pons. ACS Appl. Materials \& Interfaces, 11 (28), 25008 (2019). DOI: 10.1021/acsami.9b06194
  18. V.L. Ermolaev. Opt. Spectrosc., 125 (2), 256 (2018). DOI: 10.21883/OS.2018.08.46368.97-18
  19. E.B. Sveshnikova, V.L. Ermolaev. Opt. Spectrosc., 111 (1), 34 (2011). https://elibrary.ru/download/elibrary_16525621_ 62511575.pdf
  20. V.L. Ermolaev, E.B. Sveshnikova, E.N. Bodunov. Physics-Uspekhi, 39 (3), 261 (1996). DOI: 10.3367/UFNr.0166.199603c.0279
  21. V.L. Ermolaev, E.B. Sveshnikova, T.A. Shakhverdov. Rus. Chem. Rev., 44 (1), 48 (1975). https://www.uspkhim.ru/RCR2142pdf
  22. A. Aharoni, D. Oron, U. Banin, E. Rabani, J. Jortner. Phys. Rev. Lett., 100, 057404 (2008). DOI: 10.1103/PhysRevLett.100.057404
  23. Q. Wen, St.V. Kershaw, S. Kalytchuk, O. Zhovtiuk, C. Reckmeier. ACS Nano, 10 (4), 4301 (2016). DOI: 10.1021/acsnano.5b07852
  24. O.E. Semonin, J.C. Johnson, J.M. Luther, A.G. Midgett, A.J. Nozik, M.C. Beard. J. Phys. Chem. Lett., 1, 2445 (2010). DOI: 10.1021/jz100830r
  25. S.E. Lappi, B. Smith, S. Franzen. Spectrochim. Acta, Part A, 60, 2611 (2004). DOI: 10.1016/j.saa.2003.12.042
  26. S. Klingler, J. Hniopek, R. Stach, M. Schmitt, J. Popp. ACS Meas. Sci. Au, 2 (2), 157 (2022). DOI: 10.1021/acsmeasuresciau.1c00048
  27. B. Xue, J. Cao, D. Deng, J. Xia, J. Jin, Zh. Qian, Yu. Gu. J. Mater. Sci: Mater Med., 23, 723 (2012). DOI: 10.1007/s10856-012-4548-z
  28. S.I. Sadovnikov, A.I. Gusev. RSC Adv., 10, 40171 (2020). DOI: 10.1039/D0RA07853K
  29. H. Du, C. Chen, R. Krishnan, T.D. Krauss, J.M. Harbold, F.W. Wise, M.G. Thomas, J. Silcox. Nano Lett., 2 (11), 1321 (2002). DOI: 10.1021/nl025785g
  30. H. Liu, P. Guyot-Sionnest. J. Phys. Chem. C, 14 (35), 14860 (2010). DOI: 10.1021/jp105818e
  31. B.L. Wehrenberg, C. Wang, P. Guyet-Sionnest. J. Phys. Chem. B, 106, 10634 (2002). DOI: 10.1063/1.4917388
  32. P.S. Parfenov, A.P. Litvin, A.V. Baranov, E.V. Ushakova, A.V. Fedorov, A.V. Prudnikovb, M.V. Artemyev. Opt. Spectrosc., 112, 868 (2012). DOI: 10.1134/S0030400X12060136
  33. A.P. Litvin, P.S. Parfenov, E.V. Ushakova, A.L. Simoes Gamboa, A.V. Fedorov et al. J. Phys. Chem. C, 118 (35), 20721 (2014). DOI: 10.1021/jp507181k
  34. C. Cheng, J. Li, X. Chengb. J. Lumin., 188, 252 (2017). DOI: 10.1016/j.jlumin.2017.04.037
  35. E.V. Ushakova, A.P. Litvin, P.S. Parfenov, A.V. Fedorov, M. Artemyev, A.V. Prudnikau, I.D. Rukhlenko, A.V. Baranov. ACS Nano, 6 (10), 8913 (2012). DOI: 10.1021/nn3029106
  36. I. Grevtseva, T. Chevychelova, O. Ovchinnikov, M. Smirnov, T. Kondratenko, V. Khokhlov, A.I. Zvyagin, M. Astashkina, K. Chirkov. Optical and Quantum Electronics, 55 (5) (2023). DOI: 10.1007/s11082-023-04658-3
  37. M.S. Gaponenko, A.A. Lutich, N.A. Tolstik, A.A. Onushchenko, A.M. Malyarevich, E.P. Petrov, K.V. Yumashev. Phys. Rev. B, 82, 125320 (2010). DOI: 10.1103/PhysRevB.82.125320
  38. Dae Gwi Kim, T. Kuwabara, M. Nakayama. J. Lumin., 119-120, 214 (2006). DOI: 10.1016/j.jlumin.2005.12.033
  39. S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen. Opt. Mater. Express, 2, 1588 (2012). DOI: 10.1364/OME.2.001588
  40. F.W.B. van Leeuwen, B. Cornelissen, F. Caobelli, L. Evangelista, L. Rbah-Vidal, S. Del Vecchio, C. Xavier, J. Barbet, M. de Jong. EJNMMI Radiopharm. Chem., 2, 15 (2017). DOI: 10.1186/s41181-017-0034-8
  41. O. Ciocirlan, O. Iulian. J. Serb. Chem. Soc., 74 (3), 317 (2009). DOI: 10.2298/JSC0903317C
  42. L.V. Vu, S.C. Doanh, L.T. Nga, N.N. Long. e-J. Surf. Sci. Nanotech., 9, 494 (2011). DOI: 10.1380/ejssnt.2011.494
  43. P. Scherrer. Nachr. Ges. Wiss. Gott., 26, 98 (1918)
  44. W.W. Scanlon. J. Phys. Chem. Solids, 8, 423 (1959). DOI: 10.1016/0022-3697(59)90379-8
  45. I. Moreels, K. Lambert, D. Smeets, D. Muynck, T. Nollet, J.C. Martins, F. Vanhaecke, A. Vantomme, Ch. Delerue, G. Allan, Z. Hens. ACS Nano, 3 (10), 3023 (2009). DOI: 10.1021/nn900863a
  46. J.R. Caram, S.N. Bertram, H. Utzat, W.R. Hess, J.A. Carr, T.S. Bischof, A.P. Beyler, M.W.B. Wilson, M.G. Bawendi. Nano Lett., 16 (10), 6070 (2019). DOI:10.1021/acs.nanolett.6b02147
  47. S. Sadhu, M. Tachiya, A. Patra. J. Phys. Chem. C, 114 (6), 2842 (2010). DOI: 10.1021/jp912268m
  48. E.N. Bodunov, V.V. Danilov, A.S. Panfutova, A.L. Simoes Gamboa. Ann. Phys. (Berlin), 528 (3-4), 272 (2016). DOI: 10.1002/andp.201500350
  49. M.S. Smirnov. Opt. Spectrosc., 123 (5), 705 (2017). DOI: 10.1134/S0030400X17090284
  50. M. Tachiya. Chem. Phys. Lett., 33 (2), 289 (1975). DOI: 10.1016/0009-2614(75)80158-8
  51. F.G. Sanchez, C.C. Ruiz. J. Lumin., 69, 179 (1996). DOI: 10.1016/S0022-2313(96)00116-0

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru