Birefringence and dichroism of the vacuum in the field of a standing electromagnetic wave
Aleksandrov I. A. 1,2, Chubukov D. V., Tkachev A. G.1, Klochai A. I.1
1St. Petersburg State University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: i.aleksandrov@spbu.ru

PDF
Vacuum birefringence and dichroism are investigated in the setup involving a probe photon traversing a strong standing electromagnetic wave formed by two counterpopagating plane-wave laser beams. The analysis is based on the evaluation of the polarization tensor. We consider both the regime of relatively low laser frequency and photon energy and the domain where the energies are of the order of the electron rest energy. In the former case, if the external field is sufficiently weak, one can obtain very accurate predictions by means of the local values of the leading-order contribution to the Heisenberg-Euler effective Lagrangian. However, to address the high-energy and strong-field domains, one has to employ different methods. Here we utilize the locally-constant field approximation (LCFA) and compute the real and imaginary parts of the polarization tensor varying the propagation direction of the probe photon. It is demonstrated that if the propagation axis of the photon is parallel to that of the laser beams, then the effects are governed entirely by the counterpropagating beam, while the copropagating one is irrelevant. If the photon travels perpendicularly to the laser beam axis, the two plane waves are equally significant. In this case, within the Heisenberg-Euler approximation, it is sufficient to multiply the corresponding single-wave result by a factor of two, whereas the LCFA predictions are less trivial as they incorporate the higher-order nonlinear contributions. Keywords: vacuum birefringence, dichroism, quantum electrodynamics, strong fields, nonlinear effects.
  1. H. Euler, B. Kockel. Naturwiss., 23, 246 (1935)
  2. W. Heisenberg, H. Euler, Z. Phys., 98, 714 (1936)
  3. J. Schwinger, Phys. Rev., 82, 664 (1951). DOI: 10.1103/PhysRev.82.664
  4. J.S. Toll, Ph.D. thesis, Princeton Univ., 1952
  5. R. Baier, P. Breitenlohner, Acta Phys. Austriaca, 25, 212 (1967)
  6. R. Baier, P. Breitenlohner, Nuovo Cimento B, 47, 117 (1967). DOI: 10.1007/BF02712312
  7. V.N. Bayer, A.I. Milstein, V.M. Strakhovenko, ZhETF, 69, 1893 (1975) (in Russian)
  8. W. Becker, H. Mitter, J. Phys. A, 8, 1638 (1975). DOI: 10.1088/0305-4470/8/10/017
  9. E.B. Aleksandrov, A.A. Anselm, A.N. Moskalev, ZhETF, 89, 1181 (1985) (in Russian)
  10. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rev. Lett., 97, 083603 (2006). DOI: 10.1103/PhysRevLett.97.083603
  11. T. Heinzl, B. Liesfeld, K.U. Amthor, H. Schwoerer, R. Sauerbrey, A. Wipf, Opt. Commun., 267, 318 (2006). DOI: 10.1016/j.optcom.2006.06.053
  12. V. Dinu, T. Heinzl, A. Ilderton, M. Marklund, G. Torgrimsson, Phys. Rev. D, 89, 125003 (2014). DOI: 10.1103/PhysRevD.89.125003
  13. F. Karbstein, E.A. Mosman, Phys. Rev. D, 101, 113002 (2020). DOI: 10.1103/PhysRevD.101.113002
  14. F. Karbstein, Annalen Phys., 534, 2100137 (2022). DOI: 10.1002/andp.202100137
  15. F. Karbstein, H. Gies, M. Reuter, M. Zepf, Phys. Rev. D, 92, 071301(R) (2015). DOI: 10.1103/PhysRevD.92.071301
  16. H.-P. Schlenvoigt, T. Heinzl, U. Schramm, T.E. Cowan, R. Sauerbrey, Phys. Scr., 91, 023010 (2016). DOI: 10.1088/0031-8949/91/2/023010
  17. N. Ahmadiniaz, T.E. Cowan, R. Sauerbrey, U. Schramm, H.-P. Schlenvoigt, R. Schutzhold, Phys. Rev. D, 101, 116019 (2020). DOI: 10.1103/PhysRevD.101.116019
  18. F. Karbstein, D. Ullmann, E.A. Mosman, M. Zepf, Phys. Rev. Lett., 129, 061802 (2022). DOI: 10.1103/PhysRevLett.129.061802
  19. N. Ahmadiniaz, T. E. Cowan, J. Grenzer, S. Franchino-Vinas, A. Laso Garcia, M. vSmid, T. Toncian, M.A. Trejo, R. Schutzhold, Phys. Rev. D, 108, 076005 (2023). DOI: 10.1103/PhysRevD.108.076005
  20. F. Karbstein, R. Shaisultanov, Phys. Rev. D, 91, 085027 (2015). DOI: 10.1103/PhysRevD.91.085027
  21. I.A. Batalin, A.E. Shabad, Prepr. FIAN, 166 (1968) (in Russian)
  22. N.B. Narozhny, ZhETF, 55, 714 (1968) (in Russian)
  23. V.I. Ritus, Ann. Phys., 69, 555 (1972). DOI: 10.1016/0003-4916(72)90191-1
  24. S. Meuren, C.H. Keitel, A. Di Piazza, Phys. Rev. D, 88, 013007 (2013). DOI: 10.1103/PhysRevD.88.013007
  25. S. Bragin, S. Meuren, C.H. Keitel, A. Di Piazza, Phys. Rev. Lett., 119, 250403 (2017). DOI: 10.1103/PhysRevLett.119.250403
  26. I.A. Aleksandrov, V.M. Shabaev, Journ.Exp.Theor.Phys., 166, 182 (2024) (in Russian). DOI: 10.31857/S0044451024080042
  27. B. King, N. Elkina, Phys. Rev. A, 94, 062102 (2016). DOI: 10.1103/PhysRevA.94.062102
  28. Y. Nakamiya, K. Homma, Phys. Rev. D, 96, 053002 (2017). DOI: 10.1103/PhysRevD.96.053002
  29. F. Della Valle, A. Ejlli, U. Gastaldi, G. Messineo, E. Milotti, R. Pengo, G. Ruoso, G. Zavattini, Eur. Phys. J. C, 76, 24 (2016). DOI: 10.1140/epjc/s10052-015-3869-8
  30. G. Zavattini, F. Della Valle, A. Ejlli, G. Ruoso, Eur. Phys. J. C, 76, 294 (2016). DOI: 10.1140/epjc/s10052-016-4139-0
  31. R.S. Scorer, Q. J. Mech. Appl. Math., 3, 107 (1950). DOI: 10.1093/qjmam/3.1.107
  32. N.B. Narozhny, S.S. Bulanov, V.D. Moor, V.S. Popov, Pisma v ZhETF, 80, 434 (2004) (in Russian). DOI: 10.1134/1.1830652
  33. S.S. Bulanov, N.B. Narozhny, V.D. Moor, V.S. Popov, ZhETF, 129, 14 (2006) (in Russian)
  34. F. Hebenstreit, R. Alkofer, H. Gies, Phys. Rev. D, 78, 061701(R) (2008). DOI: 10.1103/PhysRevD.78.061701
  35. S.S. Bulanov, V.D. Mur, N.B. Narozhny, J. Nees, V.S. Popov, Phys. Rev. Lett., 104, 220404 (2010). DOI: 10.1103/PhysRevLett.104.220404
  36. S.P. Gavrilov, D.M. Gitman, Phys. Rev. D, 95, 076013 (2017). DOI: 10.1103/PhysRevD.95.076013
  37. I.A. Aleksandrov, G. Plunien, V.M. Shabaev, Phys. Rev. D, 99, 016020 (2019). DOI: 10.1103/PhysRevD.99.016020
  38. D.G. Sevostyanov, I.A. Aleksandrov, G. Plunien, V.M. Shabaev, Phys. Rev. D, 104, 076014 (2021). DOI: 10.1103/PhysRevD.104.076014
  39. I.A. Aleksandrov, D.G. Sevostyanov, V.M. Shabaev, Symmetry, 14, 2444 (2022). DOI: 10.3390/sym14112444
  40. I.A. Aleksandrov, D.G. Sevostyanov, V.M. Shabaev, Phys. Rev. D, 111, 016010 (2025). DOI: 10.1103/PhysRevD.111.016010
  41. A.G. Tkachev, I.A. Aleksandrov, V.M. Shabaev, arXiv:2408.04084.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru