Plasmon-enhanced energy transfer in hybrid porous structures for luminescent sensors
Nikitin I. Yu.
1,2, Borodina L. N.
1,2, Boltenko A. V.
1,2, Baranov M. A.
1,2, Parfenov P.S.
1,2, Gladskikh I. A.
1,2, Vartanyan T. A.
1,21ITMO University, St. Petersburg, Russia
2International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
Email: nikitin0igor512@gmail.com, lborodina141@gmail.com, AlexeyBoltenko@yandex.ru, mbaranov@itmo.ru, qrspeter@gmail.com, 138020@mail.ru, Tigran.Vartanyan@mail.ru
A hybrid nanostructure consisting of an island silver film coated with nanoporous aluminum oxide obtained by anodic oxidation of a metallic aluminum film was synthesized and studied. In the presence of silver nanoparticles, the intrinsic luminescence of anodic aluminum oxide, caused by the presence of luminescent centers in its structure, is enhanced. Application of the Rhodamine 6G dye to the synthesized nanostructure leads to quenching of the luminescent centers of aluminum oxide with a simultaneous increase in the luminescence intensity of the dye, which indicates effective excitation transfer from the luminescent centers to the dye in the presence of silver nanoparticles with plasmon resonance in a close frequency band. The synthesized structure can find application in optical sensors and receivers of optical radiation. Keywords: Plasmon resonance, Anodic alumina, Thin films, Luminescent sensors.
- T. Kondo, T. Sano, T. Yanagishita, H. Masuda, J. Phys. Chem. C, 127 (44), 21629 (2023). DOI: 10.1021/acs.jpcc.3c05264
- U. Malinovskis, R. Poplausks, D. Erts, K. Ramser, S. Tamuleviv cius, A. Tamuleviv ciene, Y. Gu, J. Prikulis, Nanomaterials, 9 (4), 531 (2019). DOI: 10.3390/nano9040531
- W.J. Ho, P.Y. Cheng, K.Y. Hsiao, Appl. Surf. Sci., 354, 25 (2015). DOI: 10.1016/j.apsusc.2015.05.049
- O. Stranik, H.M. McEvoy, C. McDonagh, B.D. MacCraith, Sensors Actuators, B Chem., 107 (1 spec. iss.), 148 (2005). DOI: 10.1016/j.snb.2004.08.032
- I.Y. Nikitin, K.A. Maleeva, D. Kafeeva, A.V. Nashyokin, I.A. Gladskikh. In: Proc. of SPIE/COS Photonics Asia 2023 (SPIE, 2023), vol. 12774, p. 12774D-1, DOI: 10.1117/12.2686292
- N.T.T. Phuong, T.A. Nguyen, V.T. Huong, L.H. Tho, D.T. Anh, H.K.T. Ta, T.H. Huy, K.T.L. Trinh, N.H.T. Tran, Micromachines, 13 (11), 1840 (2022). DOI: 10.3390/mi13111840
- A.B. Taylor, P. Zijlstra, ACS Sensors, 2 (8), 1103 (2017). DOI: 10.1021/acssensors.7b00382
- G. Sun, J.B. Khurgin, IEEE J. Sel. Top. Quantum Electron., 17 (1), 110 (2011). DOI: 10.1109/JSTQE.2010.2047249
- C.R. Simovski, M.S.M. Mollaei, P.M. Voroshilov. Phys. Rev. B, 101 (24), 245421 (2020). DOI: 10.1103/PhysRevB.101.245421
- F. Reil, U. Hohenester, J.R. Krenn, A. Leitner, Nano Lett., 8 (12), 4128 (2008). DOI: 10.1021/nl801480m
- A. Mohammadpour, I. Utkin, S.C. Bodepudi, P. Kar, R. Fedosejevs, S. Pramanik, K. Shankar, J. Nanosci. Nanotechnol., 13 (4), 2647 (2013). DOI: 10.1166/jnn.2013.7348
- R.D. Nabiullina, I.Y. Nikitin, E.O. Soloveva, I.A. Gladskikh, A.A. Starovoytov. In: Proc. of SPIE Photonics Europe 2022, ed. by D.L. Andrews, A.J. Bain, J.-M. Nunzi (SPIE, Strasbourg, 2022), p. 6. DOI: https://doi.org/10.1117/12.2621343
- N.A. Toropov, I.A. Gladskikh, P.S. Parfenov, T.A. Vartanyan, Opt. Quantum Electron., 49 (154), 1 (2017). DOI: 10.1007/s11082-017-0996-5
- V. Klimov, Nanoplazmonika, 2-d ed. (Fizmatlit, M., 2010) (in Russian)
- F. Cheng, P.H. Su, J. Choi, S. Gwo, X. Li, C.K. Shih, ACS Nano, 10 (11), 9852 (2016). DOI: 10.1021/acsnano.6b05556
- R.A. Mirzoev, A.D. Davidov, Anodnie protsessi elektrokhimicheskoy obrabotki metallov, 4-th ed. (Lan', SPb, M., Krasnodar, 2022) (in Russian)
- Y. Yamamoto, N. Baba, S. Tajima, Nature, 289, 572 (1981)
- Y. Du, W.L. Cai, C.M. Mo, J. Chen, L.D. Zhang, X.G. Zhu, Appl. Phys. Lett., 74 (20), 2951 (1999). DOI: 10.1063/1.123976
- A. Makhal, S. Sarkar, S.K. Pal, H. Yan, D. Wulferding, F. Cetin, P. Lemmens, Nanotechnology, 23 (30), 305705 (2012). DOI: 10.1088/0957-4484/23/30/305705
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.