High-harmonic generation by interaction of frequency-spaced laser pulses with a graphene monolayer
Panferov A. D.
1, Ulyanova A. A.
11Saratov State University, Saratov, Russia
Email: panferovad@sgu.ru, ulyanova.nastiya@yandex.ru
The features of the high-harmonic generation under conditions of simultaneous action of two laser pulses with different frequencies on graphene are investigated. For this purpose, a model based on a non-perturbative quantum kinetic equation was used. The normal incidence of short linearly polarized pulses with photon energies of 0.25 eV and 1.0 eV on the sample surface is considered. The polarization planes are chosen orthogonal to clearly identify nonlinear interaction effects. It is shown that under such conditions, the spectrum of high-frequency harmonics should be enriched and the efficiency of conversion of the energy of radiation incident on the sample to the high-frequency region should increase. Keywords: high-harmonic, graphene monolayer, nonlinear effects, quantum kinetic equation.
- M. Ferray, A. L'Huillier, X.F. Li, L.A. Lompre, G. Mainfray, C. Manus. J. Phys. B: At. Mol. Opt. Phys., 21 (3), L31-L35 (1988). DOI: 10.1088/0953-4075/21/3/001
- Sh. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis. Nature Physics, 7, 138-141 (2011). DOI: 10.1038/NPHYS1847
- Sh. Ghimire, D.A. Reis. Nature Physics, 15, 10-16 (2019). DOI: 10.1038/s41567-018-0315-5
- H.A. Hafez, S. Kovalev, J-Ch. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Mullen, M. Bonn, M. Gensch, D. Turchinovich. Nature, 561, 507-511 (2018). DOI: 10.1038/s41586-018-0508-1
- S. Kovalev, H.A. Hafez, K-J. Tielrooij, J-Ch. Deinert, I. Ilyakov, N. Awari, D. Alkaraz, K. Soundarapandian, D. Saleta, S. Germanskiy, M. Chen, M. Bawatna, B. Green, F.H.L. Koppens, M. Mittendorf, M. Bonn, M. Gensch, D. Turchinovich. Sci. Adv., 7 (15), eabf9809 (2021). DOI: 10.1126/sciadv.abf9809
- N. Yoshikawa, T. Tamaya, K. Tanaka. Science, 356, 736-738 (2017). DOI: 10.1126/science.aam8861
- S. Cha, M. Kim, Y. Kim, Sh. Choi, S. Kang, H. Kim, S. Yoon, G. Moon, T. Kim, Y.W. Lee, G.Y. Cho, M.J. Park, Ch.-J. Kim, B.J. Kim, J.D. Lee, M-H. Jo, J. Kim. Nature Commun., 13, 6630 (2022). DOI: 10.1038/s41467-022-34337-y
- K.L. Ishikawa. Phy. Rev. B., 82, 201402 (2010). DOI: 10.1103/PhysRevB.82.201402
- I. Al-Naib, J.E. Sipe, M.M. Digman. New J. Phys., 17, 113018 (2015). DOI: 10.1088/1367-2630/17/11/113018
- M. Ornigotti, D.N. Carvalho, F. Biancalana. Riv. Nuovo Cim., 46, 295-380 (2023). DOI: 10.1007/s40766-023-00043-8
- H.K. Avetissian, A.K. Avetissian, B.R. Avchyan, G.F. Mkrtchian. Phys. Rev. B, 100, 035434 (2019). DOI: 10.1103/PhysRevB.100.035434
- M.S. Mrudul, A. Jimenez-Galan, M. Ivanov, G. Dixit. Optica, 8 (3), 422-427 (2021). DOI: 10.1364/OPTICA.418152
- H.K. Avetissian, G.F. Mkrtchian, A. Knorr. Phys. Rev. B, 105, 195405 (2022). DOI: 10.1103/PhysRevB.105.195405
- W. Mao, A. Rubio, Sh.A. Sato. Phys. Rev. B, 109, 045421 (2024). DOI: 10.1103/PhysRevB.109.045421
- A.A. Grib, S.G. Mamaev, V.M. Mostepanenko. Vakuumnye kvantovye effekty v sil'nykh polyakh (Energoatomizdat, M., 1988) (in Russian)
- S.M. Schmidt, D. Blaschke, G. Ropke, S.A. Smolyansky, A.V. Prozorkevich, V.D. Toneev. Int. J. Mod. Phys. E, 7 (6), 709 (1998). DOI: 10.1142/S0218301398000403
- D.B. Blaschke, A.V. Prozorkevich, G. Ropke, C.D. Roberts, S.M. Schmidt, D.S. Shkirmanov, S.A. Smolyansky. Eur. Phys. J. D, 55, 341 (2009). DOI: 10.1140/epjd/e2009-00156-y
- I.A. Aleksandrov, A.D. Panferov, S.A. Smolyansky. Phys. Rev. A, 103, 053107 (2021). DOI: 10.1103/PhysRevA.103.053107
- P.V. Sasorov, F. Pegoraro, T.Zh. Esirkepov, S.V. Bulanov. New J. Phys., 23, 105003 (2021). DOI: 10.1088/1367-2630/ac28cb
- A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya, G. Torgrimsson. Phys. Reports, 1010, 1 (2023). DOI: 10.1016/j.physrep.2023.01.003
- V.V. Dmitriev, S.A. Smolyansky, V.A. Tseryupa. Physics of Atomic Nuclei, 86, 913 (2023). DOI: 10.1134/S1063778823050137
- A. Panferov, S. Smolyansky, D. Blaschke, N. Gevorgyan. EPJ Web Conf., 204, 060089 (2019). DOI: 10.1051/epjconf/201920406008
- S.A. Smolyansky, A.D. Panferov, D.B. Blaschke, N.T. Gevorgyan. Particles, 2, 208 (2019). DOI: 10.3390/particles2020015
- S.A. Smolyansky, D.B. Blaschke, V.V. Dmitriev, A.D. Panferov, N.T. Gevorgyan. Particles, 3, 456 (2020). DOI: 10.3390/particles3020032
- A.D. Panferov, N.A. Novikov. Izv. Sarat. Univ. Nov. Ser. Ser.: Fiz., 23 (3), 254 (2023) (in Russian). DOI: 10.18500/1817-3020-2023-23-3-254-264
- A.D. Panferov, I.A. Shcherbakov. Izv. Sarat. Univ. Nov. Ser. Ser.: Fiz., 24 (3), 198 (2024) (in Russian). DOI: 10.18500/1817-3020-2023-24-3-198-208
- M.I. Katsnelson. The Physics of Graphene. 2nd edn. (Cambridge University Press, 2020)
- T.A. Abbott, D.J. Griffiths. Am. J. Phys., 53, 1203-1211 (1985). DOI: 10.1119/1.14084
- Chr. Heide, T. Eckstein, T. Boolakee, C. Gerner, H.B. Weber, I. Franco, P. Hommelhoff. Nano Lett., 21, 9403-9409 (2021). DOI: 10.1021/acs.nanolett.1c02538
- Y. Kim, M.J. Kim, S. Cha, Sh. Choi, Ch-J. Kim, B.J. Kim, M.-H. Jo, J. Kim, J.D. Lee. Nano Lett., 24, 1277-1283 (2024). DOI: 10.1021/acs.nanolett.3c04278
- A.D. Panferov, N.A. Novikov. In Vzaimodeistvie sverkhvysokochastotnogo, teragertsovogo i opticheskogo izlucheniya s poluprovodnikovymi mikro- i nanostrukturami, metamaterialami i bioob"ektami: Sbornik statei odinnadtsatoi Vserossiiskoi nauchnoi shkoly-seminara (Sarat. Istochnik, Saratov, 2024), pp. 89-93 (in Russian)
- A.D. Panferov, N.V. Posnova, A.A. Ul'yanova. Program. Sist.: Teor. Prilozh., 14 (2), 27-47 (2023) (in Russian). DOI: 10.25209/2079-3316-2023-14-2-27-47
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.