Physics of the Solid State
Volumes and Issues
Distribution of copper clusters in cobalt-containing nanowires
Chuprakov S. A. 1
1M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: chuprakov@imp.uran.ru

PDF
A method of application of the nuclear magnetic resonance method to determine the structure of nanowires with the composition Co80Cu20 is proposed. Nanowires prepared using templat matrices by electrolytic deposition have been studied. The pore thickness is 10 μm and the pore diameter is 100 nm. The structure of homogeneous copper and cobalt nanowires was determined by analysing nuclear magnetic resonance data on 59Co in the local field and three-dimensional modelling. Based on the analysis of nuclear magnetic resonance spectra, information about the distribution of hyperfine fields in the investigated nanowires, as well as on the number of cobalt atoms with different types of nearest-neighbour environment was obtained. Based on the data on the number of cobalt atoms in the coordination of which copper atoms are absent, it is established that in these nanowires the crystalline structure of FCC type is realised. Earlier, evaluation and comparison of the intensity of resonance lines showed that clusters with agglomeration of about 30 atoms are formed in the volume of cobalt. Three-dimensional modelling allowed us to clarify the shape of these clusters.Three-dimensional modelling allowed us to clarify the shape of these clusters. On the basis of the analysis of nuclear magnetic resonance spectra and three-dimensional modelling, taking into account the composition of nanowires, conclusions about the structure of homogeneous cobalt-containing nanowires were made. Keywords: nanowires, nuclear magnetic resonance, modelling, clusters.
  1. V. Petrova, A.A. Corrao, S. Wang, Y. Xiao, K.W. Chapman, E.E. Fullerton, P.G. Khalifah, P. Liu. RSC Adv. 12, 33, 21153 (2022)
  2. K. Gandha, K. Elkins, N. Poudyal, X. Liu, J.P. Liu. Sci. Rep. 4, 5345 (2014)
  3. J. Bran, M. Jean, R. Larde, X. Sauvage, J.M. Le Breton, A. Pautrat. J. Korean Phys. Soc. 62, 12, 1744 (2013)
  4. P. Schio, F. Vidal, Y. Zheng, J. Milano, E. Fonda, D. Demaille, B. Vodungbo, J. Varalda, A.J.A. de Oliveira, V. Etgens. Phys. Rev. B 82, 094436 (2010)
  5. E. Walter, R. Penner, H. Liu, K. Ng, M. Zach, F. Favier. Surf. Interface Anal. 34, 409 (2002)
  6. G. Schiavone, M.P.Y. Desmulliez, A.J. Walton. Micromachines 5, 3, 622 (2014)
  7. M.M. Maqableh, X. Huang, S.Y. Sung, K.S.M. Reddy, G. Norby, R. Victora, B.J. Stadler. Nano Lett. 12, 8, 4102 (2012)
  8. P. Fricoteaux, C. Rousse. J. Electroanal. Chem. 733, 53 (2014)
  9. Yu. Gulyaev, S. Chigarev, A. Panas, E. Vilkov, N. Maksimov, D. Zagorsky, A. Shatalov. Pis'ma v ZhTF 45, 6, (2019). (in Russian)
  10. Y. Lei, X. Zhang, W. Nie, Y. Zhang, Q. Gao, F. Gao, Z. Li, A. Sun, F. Liu, Y. Cheng, G. Xu, J. Guo. JES 168, 11, 112507 (2021)
  11. M. Tian, N. Kumar, T. Mallouk, M. Chan. Phys. Rev. B 78, 0454171 (2008)
  12. X. Duan, Y. Wang, L. Bao, W. Zhou, N. Bai, G. Yun. Appl. Phys. Expr. 15, 9, 095001 (2022)
  13. A. Samardak, Y. Jeon, V. Samardak, A. Kozlov, K. Rogachev, A. Ognev, E. Jeong, G.W. Kim, M.J. Ko, A. Samardak, Y.K. Kim. Small 18, (2022)
  14. C. Fernandez-Gonzalez, A. Guedeja-Marron, B.L. Rodilla, A. Arche-Nun ez, R. Corcuera, I. Lucas, M.T. Gonzalez, M. Varela, P. de la Presa, L. Aballe, L. Perez, S. Ruiz-Gomez. Nanomaterials 12, 15, 2565 (2022)
  15. A. Nazemi, A. Najafian, S.A. Seyed Sadjadi. Superlattices Microstruct. 81, 1 (2015)
  16. C.R. Martin. Science 266, 5193, 1961 (1994)
  17. O.M. Zhigalina, I.M. Doludenko, D.N. Khmelenin, D.L. Zagorskiy, S.A. Bedin, I.M. Ivanov. Crystallogr. Rep. 63, 3, 480 (2018)
  18. V. Scarani, B. Doudin, J.-P. Ansermet. J. Magn. Magn. Mater. 205, 2-3, 241 (1999)
  19. P. Wang, L. Gao, Z. Qiu, X. Song, L. Wang, S. Yang, R.-i. Murakami. J. App. Phys. 104, 6, 064304 (2008)
  20. V. Prida, V. Vega, J. Garci a, L. Iglesias, B. Hernando, I. Mi nguez Bacho. In: Electrochemical Methods for Template-Assisted Synthesis of Nanostructured Materials. Vazquez M., editor. Woodhead Publishing; Cambridge, UK, 2015, 3 p
  21. D. Zagorsky, K. Frolov, S. Bedin, I. Perunov, M. Chuev, A. Lomov, I. Doludenko. FTT 60, 11, 2075 (2018). (in Russian)
  22. P. Scholzen, G. Lang, A. Andreev, A. Quintana, J. Malloy, C. Jensen, K. Liu, J.-B. d'Espinose de Lacaillerie. Phys. Chem. Chem. Phys. 24, 11898 (2022)
  23. Ch. SA. FTT 66, 4, 510 (2024). (in Russian)
  24. S. Chuprakov, I. Blinov, D. Zagorskii, D. Cherkasov. Phys. Met. Metallogr. 122, 9, 869 (2021)
  25. G.Y. Guo, H. Ebert. Phys. Rev. B 53, 5, 2492 (1996)
  26. H.A.M. de Gronckel, K. Kopinga, W.J.M. de Jonge, P. Panissod, J.P. Schille, F.J.A. den Broeder. Phys. Rev. B 44, 16, 9100 (1991)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru