Kalinin Yu.E.
1, Sitnikov A.V.
1, Makagonov V.A.
1, Foshin V.A.
1, Volochaev M.N.
2,31Voronezh State Technical University, Voronezh, Russia
2Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
3Siberian State University of Science and Technology, Krasnoyarsk, Russia
Email: kalinin48@mail.ru, sitnikov04@mail.ru, vlad_makagonov@mail.ru, vadim.foshin@yandex.ru, volochaev91@mail.ru
The structure and electrical properties of multilayer thin films {[(Co40Fe40B20)34(SiO_2)66]/[ZnO]}n with different thickness of ZnO interlayers are studied. It was found that the (Co40Fe40B20)34(SiO_2)66 composite interlayers are amorphous, and the ZnO interlayers are hexagonal crystalline with the structure of P6_3mc symmetry group. The temperature dependence of the specific electrical resistance of multilayer nanostructures {[(Co40Fe40B20)34(SiO_2)66]/[ZnO]}n at the temperature range of 80-280 K obeys the 1/4" law, which is interpreted as Mott type hopping conductivity along the ZnO interlayers. In this case, the dependence of specific electrical resistance of the reference zinc oxide films at the noted temperatures is described by the logarithmic law rho(T) propto ln T, which indicates the presence of interference effects. The reference nanocomposites demonstrates the 1/2" mechanism, which is explained within the framework of the Efros-Shklovsky conductivity mechanism models and thermally activated tunneling. The effective density of electron states of multilayer nanostructures {[(Co40Fe40B20)34(SiO_2)66]/[ZnO]}n nonlinearly increases with increasing zinc oxide layer thickness, which is associated with the presence of a thin layer of ZnO oxidized during the deposition process at the composite-ZnO interfaces. Keywords: multilayer nanostructures, electrical resistance, hopping conductivity, density of electron states.
- E.P. Domashevskaya, S.A. Ivkov, A.V. Sitnikov, O.V. Stogney, A.T. Kozakov, A.V. Nikolsky, K.A. Barkov, N.S. Builov. J. Alloys Compd. 870, 159398 (2021). DOI: 10.1016/j.jallcom.2021.159398
- S.A. Ivkov, K.A. Barkov, E.P. Domashevskaya, E.A. Ganshina, D.L. Goloshchapov, S.V. Ryabtsev, A.V. Sitnikov, P.V. Seredin. Appl. Sci. 13, 5, 2992 (2023). DOI: 10.3390/app13052992
- E.N. Sheftel, V.A. Tedzhetov, E.V. Harin, G.Sh. Usmanova. Thin Solid Films 748, 139146 (2022). DOI: 10.1016/j.tsf.2022.139146
- Z. Guo, S. Park, H.T. Hahn, S. Wei, M. Moldovan, A.B. Karki, D.P. Young. Appl. Phys. Lett. 90, 053111 (2007). DOI: 10.1063/1.2435897
- E.Z. Meilikhov, B. Raquet, H. Rakoto. J. Exp. Theor. Phys. 92, 5, 816 (2001). DOI: 10.1134/1.1378173
- J.V. Kasiuk, J.A. Fedotova, T.N. Koltunowicz, P. Zukowski, A.M. Saad, J. Przewoznik, Cz. Kapusta, J. Zukrowski, I.A. Svito. J. Alloys Compd. 586 (1), S432 (2014). DOI: 10.1016/j.jallcom.2012.09.058
- H. Fujimori, S. Mitani, S. Ohnuma. Mater. Sci. Eng. B 31, 219 (1995). DOI: 10.1016/0921-5107(94)08032-1
- H. Meier, M.Y. Kharitonov, K.B. Efetov. Phys. Rev. B 80, 045122 (2009). DOI: 10.1103/PhysRevB.80.045122
- A.B. Granovskii, E.A. Gan'shina, A.N. Yurasov, Yu.V. Boriskina, S.G. Yerokhin, A.B. Khanikaev, M. Inoue, A.P. Vinogradov, Yu.P. Sukhorukov. J. Commun. Technol. Electron. 52, 1065 (2007). DOI: 10.1134/S1064226907090185
- A.B. Granovsky, I.V. Bykov, E.A. Gan'shina, V.S. Gushchin, M. Inoue, Yu.E. Kalinin, A.A. Kozlov, A.N. Yurasov. J. Exp. Theor. Phys. 96, 6, 1104 (2003). DOI: 10.1134/1.1591221
- V.E. Buravtsova, E.A. Gan'shina, O.S. Ivanova, Yu.E. Kalinin, S.A. Kirov, S. Pkhongkhirun, A.V. Sitnikov. Bull. Russ. Acad. Sci. Phys. 71, 1539 (2007). DOI: 10.3103/S1062873807110184
- E.A. Gan'shina, V. Buravtsova, A. Novikov, Y. Kalinin, A.V. Sitnikov. Solid State Phenom. 190, 361 (2012). DOI: 10.4028/www.scientific.net/SSP.190.361
- A.V. Sitnikov, I.V. Babkina, Yu.E. Kalinin, A.E. Nikonov, M.N. Kopytin, K.E. Nikitin, K.Yu. Chernoglazov, S.N. Nikolaev, A.L. Vasiliev, A.V. Yemelyanov, V.A. Demin, V.V. Rylkov. Nanoindustriya 13, s5-3(102), 687 (2020). (in Russian). DOI: 10.22184/1993-8578.2020.13.5s.687.696
- A.I. Iliasov, A.N. Matsukatova, A.V. Emelyanov, P.S. Slepov, K.E. Nikiruy, V.V. Rylkov. Nanoscale Horiz. 9, 2, 238 (2024). DOI: 10.1039/d3nh00421j
- S.V. Komogortsev, E.A. Denisova, R.S. Iskhakov, A.D. Balaev, L.A. Chekanova, Yu.E. Kalinin, A.V. Sitnikov. J. Appl. Phys. 113, 17C105 (2013). DOI: 10.1063/1.4794361
- S.N. Nikolaev, K.Yu. Chernoglazov, A.V. Emelyanov, A.V. Sitnikov, A.N. Taldenkov, T.D. Patsaev, A.L. Vasiliev, E.A. Gan'shina, V.A. Demin, N.S. Averkiev, A.B. Granovsky, V.V. Rylkov. JETP Lett 118, 1, 58 (2023). DOI: 10.1134/S0021364023601550
- I.S. Beloborodov, A.V. Lopatin, V.M. Vinokur. Phys. Rev. B 72, 125121 (2005). DOI: 10.1103/PhysRevB.72.125121
- V.V. Rylkov, A.V. Emelyanov, S.N. Nikolaev, K.E. Nikiruy, A.V. Sitnikov, E.A. Fadeev, V.A. Demin, A.B. Granovsky. JETP 131, 1, 160 (2020). DOI: 10.1134/S1063776120070109
- Yu.E. Kalinin, A.N. Remizov, A.V. Sitnikov. Phys. Solid State 46, 11, 2146 (2004). DOI: 10.1134/1.1825563
- Yu.E. Kalinin, A.M. Kudrin, M.H. Piskareva, A.B. Sitnikov, A.K. Zvezdin. Persp. Materialy 3, 41 (2007). (in Russian)
- A.V. Sitnikov, V.A. Makagonov, Y.E. Kalinin, S.B. Kushchev, V.A. Foshin. Tech. Phys. 69, 6, 1813 (2024). DOI: 10.1134/S1063784224060458
- S.A. Gridnev, Yu.E. Kalinin, A.V. Sitnikov, O.V. Stogney. Nelinejnye yavleniya v nano- i mikrogeterogennykh sistemakh. BINOM. Laboratoriya znanij, M. (2012). 352 p. (in Russian)
- O.V. Gerashchenko, V.A. Ukleev, E.A. Dyad'kina, A.V. Sitnikov, Yu.E. Kalinin. Phys. Solid State 59, 1, 164 (2017). DOI: 10.1134/S1063783417010073
- Y.E. Kalinin, A.V. Sitnikov, V.A. Makagonov, V.A. Foshin, M.N. Volochaev, I.M. Pripechenkov, N.N. Perova, E.A. Ganshina, V.V. Rylkov, A.B. Granovsky. J. Magn. Magn. Mater. 604, 172287 (2024). DOI: 10.1016/j.jmmm.2024.172287
- O.V. Dunets, Y.E. Kalinin, M.A. Kashirin, A.V. Sitnikov. Tech. Phys. 58, 9, 1352 (2013). DOI: 10.1134/S1063784213090132
- M.N. Martyshov, A.V. Emelyanov, V.A. Demin, K.E. Nikiruy, A.A. Minnekhanov, S.N. Nikolaev, A.N. Taldenkov, A.V. Ovcharov, M.Yu. Presnyakov, A.V. Sitnikov, A.L. Vasiliev, P.A. Forsh, A.B. Granovsky, P.K. Kashkarov, M.V. Kovalchuk, V.V. Rylkov. Phys. Rev. Appl. 14, 3, 034016 (2020). DOI: 10.1103/PhysRevApplied.14.034016
- V.V. Rylkov, V.A. Demin, A.V. Emelyanov, A.V. Sitnikov, Yu.E. Kalinin, V.V. Tugushev, A.B. Granovsky. Phys. Rev. B 95, 144402 (2017). DOI: 10.1016/B978-0-12-813594-5.00013-8
- V.V. Rylkov, V.A. Demin, A.V. Emelyanov, A.V. Sitnikov, Yu.E. Kalinin, V.V. Tugushev, A.B. Granovsky. In: V. Domracheva, M. Capoli, E. Rentschler (Eds.), Novel Magnetic Nanostructures: Unique Properties and Applications, Elsevier, Amsterdam (2018), pp. 426-463. DOI: 10.1016/B978-0-12-813594-5.00013-8
- A. Ashour, M.A. Kaid, N.Z. El-Sayed, A.A. Ibrahim. Appl. Surf. Sci. 252, 22, 7844 (2006). DOI: 10.1016/j.apsusc.2005.09.048
- V.F. Gantmacher. Elektrony v neuporyadochennykh sredakh. Fizmatlit, M. (2006). 232 p. (in Russian)
- N. Mott, E. Davis. Eletronnye protsessy v nekristallicheskikh veshchestvakh: v 2 t. Mir, M. (1982). 658 s. (in Russian)
- B.I. Shklovsky, A.L. Efros. Elektronnye svojstva legirovannykh poluprovodnikov. Nauka, M. (1979). 416 p. (in Russian)
- P. Sheng, B. Abeles, Y. Arie. Phys. Rev. Lett. 31, 1, 44 (1973). DOI: 10.1103/PhysRevLett.31.44
- O. Madelung, U. Rossler, M. Schulz. Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology --- New Series (LANDOLT 3, vol. 41D). Non-Tetrahedrally Bonded Binary Compounds II. Springer-Verlag, Berlin Heidelberg (2000). XVIII, 535 p. DOI: 10.1007/b71139
- V.S. Zakhvalinskiv i, R. Laiho, K.G. Lisunov, E. Lahderanta, P.A. Petrenko, Yu.P. Stepanov, V.N. Stamov, M.L. Shubnikov, A.V. Khokhulin. Phys. Solid State 49, 5, 918 (2007). DOI: 10.1134/S1063783407050198
- B. Abeles, P. Sheng, M.D. Coutts, Y. Arie. Adv. Phys. 24, 3, 407 (1975). DOI: 10.1080/00018737500101431
- T.A. Polyanskaya, Yu.V. Shmartsev. FTT 23, 1, 3 (1989). (in Russian)
- G.V. Samsonov, A.L. Borisova, T.G. Zhidkova. Physiko-khimicheskie svoystva okislov. M.: Metallurgiya, (1978). 472 p. (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.