Physics of the Solid State
Volumes and Issues
Hopping conductivity in multilayer nanostructures {[(Co40Fe40B20)34(SiO_2)66]/[ZnO]}n
Kalinin Yu.E. 1, Sitnikov A.V. 1, Makagonov V.A. 1, Foshin V.A. 1, Volochaev M.N. 2,3
1Voronezh State Technical University, Voronezh, Russia
2Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
3Siberian State University of Science and Technology, Krasnoyarsk, Russia
Email: kalinin48@mail.ru, sitnikov04@mail.ru, vlad_makagonov@mail.ru, vadim.foshin@yandex.ru, volochaev91@mail.ru

PDF
The structure and electrical properties of multilayer thin films {[(Co40Fe40B20)34(SiO_2)66]/[ZnO]}n with different thickness of ZnO interlayers are studied. It was found that the (Co40Fe40B20)34(SiO_2)66 composite interlayers are amorphous, and the ZnO interlayers are hexagonal crystalline with the structure of P6_3mc symmetry group. The temperature dependence of the specific electrical resistance of multilayer nanostructures {[(Co40Fe40B20)34(SiO_2)66]/[ZnO]}n at the temperature range of 80-280 K obeys the 1/4" law, which is interpreted as Mott type hopping conductivity along the ZnO interlayers. In this case, the dependence of specific electrical resistance of the reference zinc oxide films at the noted temperatures is described by the logarithmic law rho(T) propto ln T, which indicates the presence of interference effects. The reference nanocomposites demonstrates the 1/2" mechanism, which is explained within the framework of the Efros-Shklovsky conductivity mechanism models and thermally activated tunneling. The effective density of electron states of multilayer nanostructures {[(Co40Fe40B20)34(SiO_2)66]/[ZnO]}n nonlinearly increases with increasing zinc oxide layer thickness, which is associated with the presence of a thin layer of ZnO oxidized during the deposition process at the composite-ZnO interfaces. Keywords: multilayer nanostructures, electrical resistance, hopping conductivity, density of electron states.
  1. E.P. Domashevskaya, S.A. Ivkov, A.V. Sitnikov, O.V. Stogney, A.T. Kozakov, A.V. Nikolsky, K.A. Barkov, N.S. Builov. J. Alloys Compd. 870, 159398 (2021). DOI: 10.1016/j.jallcom.2021.159398
  2. S.A. Ivkov, K.A. Barkov, E.P. Domashevskaya, E.A. Ganshina, D.L. Goloshchapov, S.V. Ryabtsev, A.V. Sitnikov, P.V. Seredin. Appl. Sci. 13, 5, 2992 (2023). DOI: 10.3390/app13052992
  3. E.N. Sheftel, V.A. Tedzhetov, E.V. Harin, G.Sh. Usmanova. Thin Solid Films 748, 139146 (2022). DOI: 10.1016/j.tsf.2022.139146
  4. Z. Guo, S. Park, H.T. Hahn, S. Wei, M. Moldovan, A.B. Karki, D.P. Young. Appl. Phys. Lett. 90, 053111 (2007). DOI: 10.1063/1.2435897
  5. E.Z. Meilikhov, B. Raquet, H. Rakoto. J. Exp. Theor. Phys. 92, 5, 816 (2001). DOI: 10.1134/1.1378173
  6. J.V. Kasiuk, J.A. Fedotova, T.N. Koltunowicz, P. Zukowski, A.M. Saad, J. Przewoznik, Cz. Kapusta, J. Zukrowski, I.A. Svito. J. Alloys Compd. 586 (1), S432 (2014). DOI: 10.1016/j.jallcom.2012.09.058
  7. H. Fujimori, S. Mitani, S. Ohnuma. Mater. Sci. Eng. B 31, 219 (1995). DOI: 10.1016/0921-5107(94)08032-1
  8. H. Meier, M.Y. Kharitonov, K.B. Efetov. Phys. Rev. B 80, 045122 (2009). DOI: 10.1103/PhysRevB.80.045122
  9. A.B. Granovskii, E.A. Gan'shina, A.N. Yurasov, Yu.V. Boriskina, S.G. Yerokhin, A.B. Khanikaev, M. Inoue, A.P. Vinogradov, Yu.P. Sukhorukov. J. Commun. Technol. Electron. 52, 1065 (2007). DOI: 10.1134/S1064226907090185
  10. A.B. Granovsky, I.V. Bykov, E.A. Gan'shina, V.S. Gushchin, M. Inoue, Yu.E. Kalinin, A.A. Kozlov, A.N. Yurasov. J. Exp. Theor. Phys. 96, 6, 1104 (2003). DOI: 10.1134/1.1591221
  11. V.E. Buravtsova, E.A. Gan'shina, O.S. Ivanova, Yu.E. Kalinin, S.A. Kirov, S. Pkhongkhirun, A.V. Sitnikov. Bull. Russ. Acad. Sci. Phys. 71, 1539 (2007). DOI: 10.3103/S1062873807110184
  12. E.A. Gan'shina, V. Buravtsova, A. Novikov, Y. Kalinin, A.V. Sitnikov. Solid State Phenom. 190, 361 (2012). DOI: 10.4028/www.scientific.net/SSP.190.361
  13. A.V. Sitnikov, I.V. Babkina, Yu.E. Kalinin, A.E. Nikonov, M.N. Kopytin, K.E. Nikitin, K.Yu. Chernoglazov, S.N. Nikolaev, A.L. Vasiliev, A.V. Yemelyanov, V.A. Demin, V.V. Rylkov. Nanoindustriya 13, s5-3(102), 687 (2020). (in Russian). DOI: 10.22184/1993-8578.2020.13.5s.687.696
  14. A.I. Iliasov, A.N. Matsukatova, A.V. Emelyanov, P.S. Slepov, K.E. Nikiruy, V.V. Rylkov. Nanoscale Horiz. 9, 2, 238 (2024). DOI: 10.1039/d3nh00421j
  15. S.V. Komogortsev, E.A. Denisova, R.S. Iskhakov, A.D. Balaev, L.A. Chekanova, Yu.E. Kalinin, A.V. Sitnikov. J. Appl. Phys. 113, 17C105 (2013). DOI: 10.1063/1.4794361
  16. S.N. Nikolaev, K.Yu. Chernoglazov, A.V. Emelyanov, A.V. Sitnikov, A.N. Taldenkov, T.D. Patsaev, A.L. Vasiliev, E.A. Gan'shina, V.A. Demin, N.S. Averkiev, A.B. Granovsky, V.V. Rylkov. JETP Lett 118, 1, 58 (2023). DOI: 10.1134/S0021364023601550
  17. I.S. Beloborodov, A.V. Lopatin, V.M. Vinokur. Phys. Rev. B 72, 125121 (2005). DOI: 10.1103/PhysRevB.72.125121
  18. V.V. Rylkov, A.V. Emelyanov, S.N. Nikolaev, K.E. Nikiruy, A.V. Sitnikov, E.A. Fadeev, V.A. Demin, A.B. Granovsky. JETP 131, 1, 160 (2020). DOI: 10.1134/S1063776120070109
  19. Yu.E. Kalinin, A.N. Remizov, A.V. Sitnikov. Phys. Solid State 46, 11, 2146 (2004). DOI: 10.1134/1.1825563
  20. Yu.E. Kalinin, A.M. Kudrin, M.H. Piskareva, A.B. Sitnikov, A.K. Zvezdin. Persp. Materialy 3, 41 (2007). (in Russian)
  21. A.V. Sitnikov, V.A. Makagonov, Y.E. Kalinin, S.B. Kushchev, V.A. Foshin. Tech. Phys. 69, 6, 1813 (2024). DOI: 10.1134/S1063784224060458
  22. S.A. Gridnev, Yu.E. Kalinin, A.V. Sitnikov, O.V. Stogney. Nelinejnye yavleniya v nano- i mikrogeterogennykh sistemakh. BINOM. Laboratoriya znanij, M. (2012). 352 p. (in Russian)
  23. O.V. Gerashchenko, V.A. Ukleev, E.A. Dyad'kina, A.V. Sitnikov, Yu.E. Kalinin. Phys. Solid State 59, 1, 164 (2017). DOI: 10.1134/S1063783417010073
  24. Y.E. Kalinin, A.V. Sitnikov, V.A. Makagonov, V.A. Foshin, M.N. Volochaev, I.M. Pripechenkov, N.N. Perova, E.A. Ganshina, V.V. Rylkov, A.B. Granovsky. J. Magn. Magn. Mater. 604, 172287 (2024). DOI: 10.1016/j.jmmm.2024.172287
  25. O.V. Dunets, Y.E. Kalinin, M.A. Kashirin, A.V. Sitnikov. Tech. Phys. 58, 9, 1352 (2013). DOI: 10.1134/S1063784213090132
  26. M.N. Martyshov, A.V. Emelyanov, V.A. Demin, K.E. Nikiruy, A.A. Minnekhanov, S.N. Nikolaev, A.N. Taldenkov, A.V. Ovcharov, M.Yu. Presnyakov, A.V. Sitnikov, A.L. Vasiliev, P.A. Forsh, A.B. Granovsky, P.K. Kashkarov, M.V. Kovalchuk, V.V. Rylkov. Phys. Rev. Appl. 14, 3, 034016 (2020). DOI: 10.1103/PhysRevApplied.14.034016
  27. V.V. Rylkov, V.A. Demin, A.V. Emelyanov, A.V. Sitnikov, Yu.E. Kalinin, V.V. Tugushev, A.B. Granovsky. Phys. Rev. B 95, 144402 (2017). DOI: 10.1016/B978-0-12-813594-5.00013-8
  28. V.V. Rylkov, V.A. Demin, A.V. Emelyanov, A.V. Sitnikov, Yu.E. Kalinin, V.V. Tugushev, A.B. Granovsky. In: V. Domracheva, M. Capoli, E. Rentschler (Eds.), Novel Magnetic Nanostructures: Unique Properties and Applications, Elsevier, Amsterdam (2018), pp. 426-463. DOI: 10.1016/B978-0-12-813594-5.00013-8
  29. A. Ashour, M.A. Kaid, N.Z. El-Sayed, A.A. Ibrahim. Appl. Surf. Sci. 252, 22, 7844 (2006). DOI: 10.1016/j.apsusc.2005.09.048
  30. V.F. Gantmacher. Elektrony v neuporyadochennykh sredakh. Fizmatlit, M. (2006). 232 p. (in Russian)
  31. N. Mott, E. Davis. Eletronnye protsessy v nekristallicheskikh veshchestvakh: v 2 t. Mir, M. (1982). 658 s. (in Russian)
  32. B.I. Shklovsky, A.L. Efros. Elektronnye svojstva legirovannykh poluprovodnikov. Nauka, M. (1979). 416 p. (in Russian)
  33. P. Sheng, B. Abeles, Y. Arie. Phys. Rev. Lett. 31, 1, 44 (1973). DOI: 10.1103/PhysRevLett.31.44
  34. O. Madelung, U. Rossler, M. Schulz. Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology --- New Series (LANDOLT 3, vol. 41D). Non-Tetrahedrally Bonded Binary Compounds II. Springer-Verlag, Berlin Heidelberg (2000). XVIII, 535 p. DOI: 10.1007/b71139
  35. V.S. Zakhvalinskiv i, R. Laiho, K.G. Lisunov, E. Lahderanta, P.A. Petrenko, Yu.P. Stepanov, V.N. Stamov, M.L. Shubnikov, A.V. Khokhulin. Phys. Solid State 49, 5, 918 (2007). DOI: 10.1134/S1063783407050198
  36. B. Abeles, P. Sheng, M.D. Coutts, Y. Arie. Adv. Phys. 24, 3, 407 (1975). DOI: 10.1080/00018737500101431
  37. T.A. Polyanskaya, Yu.V. Shmartsev. FTT 23, 1, 3 (1989). (in Russian)
  38. G.V. Samsonov, A.L. Borisova, T.G. Zhidkova. Physiko-khimicheskie svoystva okislov. M.: Metallurgiya, (1978). 472 p. (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru