Sedykh V. D.
1, Rybchenko O. G.
1, Dmitriev A. I.
2, Kulakov V. I.
1, Gapochka A. M.
3, Rusakov V. S.
3
1Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
2Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Сhernogolovka, Russia
3Lomonosov Moscow State University, Moscow, Russia
Email: sedykh@issp.ac.ru, orybch@issp.ac.ru, alex-dmitriev2005@yandex.ru, kulakov@issp.ac.ru, al-gap@physics.msu.ru, rusakovvs@mail.ru
The structural and magnetic features of substituted La1-xSrxFeO3-γ have been studied, in both synthesized and vacuum-annealed samples, depending on the Sr content (for x=0.33 and 0.50), using X-ray diffraction, Mossbauer spectroscopy and magnetic measurements. It has been shown that in the as-prepared samples, the volume of the pseudocubic perovskite cell decreased and the number of vacancies and Fe4+ ions increased with an increase in the Sr concentration. The Neel temperatures were determined for two compositions of the compound: TN~233 K for the La0.5Sr0.5FeO3-γ sample and TN~385 K for the La0.67Sr0.33FeO3-γ sample. The contributions of Fe3+ ions with different local environments were redistributed under vacuum annealing. That led to changes in the JF/JAF ratio, a shift in the balance towards increasing antiferromagnetism, a noticeable increase in the Neel temperature TN, and a decrease in the width of the magnetic hysteresis loops and the magnetization value. Keywords: substituted lanthanum ferrites, orthoferrites, Fe valence states, oxygen vacancies, X-ray diffraction analysis, Mossbauer spectroscopy, magnetization.
- S. Petrovic, A. Terlecki, L. Karanovic, P. Kirilov-Stefanov, M. Zduji, V. Dondur, D. Paneva, I. Mitov, V. Rakic. Appl. Catal. B Environ. 79, 186 (2008). https://doi.org/10.1016/J.APCATB.2007.10.022
- J. Faye, A. Bayleta, M. Trentesauxb, S. Royera, F. Dumeignil, D. Duprez, S. Valange. Appl. Catal. B Environ. 126, 134 (2012). https://doi.org/10.1016/J.APCATB.2012.07.001
- E.K. Abdel-Khalek, D.A. Rayan, Ahmed. A. Askar, M.I.A. Abdel Maksoud, H.H. El-Bahnasawy. J. Sol-Gel Sci. and Technology 97, 27 (2021). https://doi.org/10.1007/s10971-020-05431-8
- J.B. Yang, W.B. Yelon, W.J. James, Z.Chu, M. Kornecki, Y.X. Xie, X.D. Zhou, H.U. Anderson, Amish G. Joshi, S.K. Malik. Phys. Rev. B 66, 184415 (2002). https://doi.org/10.1103/PhysRevB.66.184415
- V.D. Sedykh, O.G. Rybchenko, A.N. Nekrasov, I.E. Koneva, V.I. Kulakov. Phys. Solid State 61 (6), 1099 (2019). DOI: 10.1134/S1063783419060210
- V.D. Sedykh, O.G. Rybchenko, E.V. Suvorov, A.I. Ivanov, V.I. Kulakov. Phys. Solid State 62 (10), 1916 (2020). DOI: 10.1134/S1063783420100297
- V.D. Sedykh, O.G. Rybchenko, N.V. Barkovskii, A.I. Ivanov, V.I. Kulakov. Phys. Solid State 63 (12), 1775 (2021). DOI: 10.1134/S1063783421100322
- O.I. Barkalov, S.V. Zaitsev, V.D. Sedykh. Solid State Commun. 354, 114912 (2022). https://doi.org/10.1016/j.ssc.2022.114912
- V. Sedykh, O. Rybchenko, V. Rusakov, S. Zaitsev, O. Barkalov, E. Postnova, T. Gubaidulina, D. Pchelina, V. Kulakov. J. Phys. Chem. Solids 171, 111001 (2022). https://doi.org/10.1016/j.jpcs.2022.111001
- V. Sedykh, V. Rusakov, T. Gubaidulina. Phys. Solid State 65 (4), 613 (2023). DOI: 10.21883/PSS.2023.04.56003.18
- V.D. Sedykh, V.S. Rusakov, T.V. Gubaidulina, O.G. Rybchenko, V.I. Kulakov. PMM 124 (2), 153 (2023). DOI: 10.1134/S0031918X22601950
- V. Sedykh, V. Rusakov, O. Rybchenko, A. Gapochka, K. Gavrilicheva, O. Barkalov, S. Zaitsev, V. Kulakov. Ceramics Intern. 49 (15), 25640 (2023). https://doi.org/10.1016/j.ceramint.2023.05.105
- J.B. Goodenough. Metallic oxides, in Progress in Solid State Chemistry, edited by H. Reiss (Pergamon, London, 5 (1971) 145-399. https://doi.org/10.1016/0079-6786(71)90018-5
- J.B. Goodenough, in Magnetism and Chemical Bond, edited by F. Albert Cotton (Interscience, London, 1 (1963) 154
- J. Grenier, N. Ea, M. Pouchard, M.M. Abou-Sekkina. Mater. Res. Bull. 19, 1301 (1984). https://doi.org/10.1016/0025-5408(84)90192-2
- P.D. Battle, N.C. Gibb, S. Nixon. J. Solid State Chem. 79, 75 (1989). https://doi.org/10.1016/0022-4596(89)90252-1
- M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc., American Institute of Physics AIP, 1489, 178 (2012). https://doi.org/10.1063/1.4759488
- P.D. Battle, T.C. Gibb, S. Nixon. J. Solid State Chem. 77, 124 (1988). https://doi.org/10.1016/0022-4596(88)90099-0
- G. Li, L. Li, M. Zhao. Phys. Stat. Sol. B 197, 165 (1996). https://doi.org/10.1002/pssb.2221970123
- Y. Shin, K.-Y. Doh, S.H. Kim, J.H. Lee, H. Bae, S.-J. Song, D. Lee. J. Mater. Chem. A 8, 4784 (2020). DOI: 10.1039/c9ta12734h
- G.A. Sawatzky, F. van der Woude. J. Phys. Colloq. 35, 47 (1974). https://doi.org/10.1051/jphyscol:1974605
- V.I. Nikolaev, V.S. Rusakov, Mossbauer Studies of ferrites, Moscow State University, Moscow, 1985 (in Russian)
- T.M. Rearick, G.L. Catchen, J.M. Adams. Phys. Rev. B 48, 224 (1993), https://doi.org/10.1103/PhysRevB.48.224
- P.K. Gallagher, J.B. MacChesney, D.N.E. Buchanan. J. Chem. Phys. 41, 2429 (1964), https://doi.org/10.1063/ 1.1726282
- J. Blasco, B. Aznar, J. Garci a, G. Subi as, J. Herrero-Marti n, J. Stankiewicz. Phys. Rev. B 77 (5) (2008). https://doi:10.1103/physrevb.77.054107
- U. Shimony, J.M. Knudsen, Mossbauer Studies on Iron in the Perovskites La1-xSrxFeO3 (0≤ x≤ l). Phys. Rev. 144 (1) (1966) 361-366
- I. Zvereva, T. Pavlova, V. Pantchuk, V. Semenov, Y. Breard, J. Choisnet. Chimica Techno Acta 1, 46 (2016). DOI: 10.15826/chimtech.2016.3.1.004
- A.I. Dmitriev, S.V.Zaitsev, M.S. Dmitrieva, O.G. Rybchenko, V.D. Sedykh. Phys. Solid State 66 (3), 386 (2024). DOI: 10.61011/FTT.2024.03.57479.1 (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.