Thermodynamic stability and pathways for the formation of core-shell states in stratified systems of small volume
Fedoseev V. B.
11Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: vbfedoseev@yandex.ru
Size effects during phase transitions in a binary stratified mixture in a small volume are simulated using chemical thermodynamics methods. The results are describing the conditions for the existence of stable, metastable and unstable thermodynamically equilibrium states using the example of a Bi-Sb solid solution. An energy surface has been created that displays all states of a stratified solution in a system with a core-shell structure. Energy profiles for optimal pathways between homogeneous and heterogeneous equilibrium states are shown. Critical nucleus states are identified. As the volume of the stratifying solution decreases, the homogeneous state becomes metastable and its stability increases. At the same time, heterogeneous states lose stability, become metastable and disappearated. The composition of the mixture also affects the energies of formation and stability of heterogeneous states. Keywords: phase transformations, size effect, stratifying solutions, metastable states, critical nucleus.
- K.R. Wilson, A.M. Prophet. Annu. Rev. Phys. Chem. 75, 1, 1 (2024)
- Z. Wei, Y. Li, R.G. Cooks, X. Yan. Annu. Rev. Phys. Chem. 71, 31 (2020)
- J. Bauermann, S. Laha, P.M. McCall, F. JUlicher, C.A. Weber. J. Am. Chem. Soc. 144, 42, 19294 (2022)
- V.B. Fedoseev, E.N. Fedoseeva. Kinet. Catal. 65, 2, 85 (2024)
- V.B. Fedoseev, T.A. Kovylina, E.N. Fedoseeva. Polym. Sci. Ser. B 66, 138 (2024)
- V.B. Fedoseev. Tech. Phys. Lett. 49, 4, 71 (2023)
- R. Mendoza-Perez, G. Guisbiers. Nanotechnology. 30, 30, 305702 (2019)
- F.H. Kaatz, A. Bultheel. Nanotechnology 29, 34, 345701 (2018)
- K.K. Bajpai, S.K. Shukla, S. Bhanu, S. Kankane. Prog. Polym. Sci. 33, 11, 1088 (2008)
- V. Marturano, P. Cerruti, M. Giamberini, B. Tylkowski, V. Ambrogi. Polymers. 9, 12, 8 (2016)
- H. Liu, X. Wang, D. Wu. Sustain. Energ. Fuels 3, 5, 1091 (2019)
- X. Wei, F. Xue, X.D. Qi, J.H. Yang, Z.W. Zhou, Y.P. Yuan, Y. Wang. Appl. Energy. 236, 3, 70 (2019)
- F. Wang, W. Lin, Z. Ling, X. Fang. Sol. Energy Mater. Sol. Cells 191, 2, 218 (2019)
- M.B. Gawande, A. Goswami, T. Asefa, H. Guo, A.V. Biradar, D.-L. Peng, R. Zboril, R.S. Varma. Chem. Soc. Rev. 44, 21, 7540 (2015)
- T. Philippe. Phys. Rev. E. 96, 3, 1 (2017)
- V.B. Fedoseev, E.N. Fedoseeva. Russ. J. Phys. Chem. A. 88, 3, 436 (2014)
- V.B. Fedoseev, A. V. Shishulin. Phys. Solid State 60, 7, 1398 (2018)
- V.M. Samsonov, I.V. Talyzin, A.Y. Kartoshkin, S.A. Vasilyev, M.I. Alymov. Comput. Mater. Sci. 199, 7, 110710 (2021)
- M. Ghasemi, Z. Zanolli, M. Stankovski, J. Johansson. Nanoscale 7, 41, 17387 (2015)
- V.M. Samsonov, A.Y. Kartoshkin, I.V. Talyzin, S.A. Vasilyev, I.A. Kaplunov. J. Phys. Conf. Ser. 1658, 1, 1 (2020)
- S. Bajaj, M.G. Haverty, R. Arroyave, W.A. Goddard Iii Frsc, S. Shankar, W.A. Goddard, S. Shankar. Nanoscale. 7, 21, 9868 (2015)
- G. Kaptay. J. Mater. Sci. 47, 24, 8320 (2012)
- D. Gross. Microcanonical thermodynamics: phase transitions in "small" systems. World Scientific. 66, (2001)
- E. Ma. Prog. Mater. Sci. 50, 4, 413 (2005)
- Z. Swiatkowska-Warkocka. Appl. Sci. 11, 5, 1978 (2021)
- S. Bogdanov, V. Samsonov, N. Sdobnyakov, V. Myasnichenko, I. Talyzin, K. Savina, V. Romanovski, A. Kolosov. J. Mater. Sci. 57, 28, 13467 (2022)
- V.M. Samsonov, N.Y. Sdobnyakov, A.Y. Kolosov, S.S. Bogdanov, I.V. Talyzin, S.A. Vasilyev, K.G. Savina, V.V. Puytov, A.N. Bazulev. Colloid J. 86, 1, 109 (2024)
- I.K. Razumov. Phys. Solid State. 66, 9. 1407 (2024)
- A.P. Babichev, N.A. Babushkina, A.M. Bratkovsky, et al. Fizicheskiye velichiny: Spravochnik. Energoatomizdat, Moscow (1991). (in Russian)
- M.A. Bykov, G.F. Voronin, N.M. Mukhamedzhanova. Pryamye i obratnye zadachi khimicheskoy termodinamiki. Nauka, Novosibirsk. (1987). P. 30. (in Russian)
- D. Hourlier, P. Perrot. Mater. Sci. Forum 653, 77 (2010)
- B. von Szyszkowski. Zeitschrift Fur Phys. Chemie. 64U, 1, 385 (1908)
- H.S. Umarkhadzhiev, R.Kh. Dadashev, S.M. Umarkhadzhiev, D.Z. Elimkhanov. Russ. J. Phys. Chem. 96, 648 (2022)
- A.A. Afashagov, M.A. Shebzukhova. A.A. Shebzukhov. Phys. Solid State 64, 293 (2022)
- V.B. Fedoseev, A.V. Shishulin, E.K. Titaeva, E.N. Fedoseeva. Phys. Solid State. 58, 10, 2095 (2016)
- V.B. Fedoseev. Phys. Solid State. 57, 3, 599 (2015)
- A.V. Shishulin, V.B. Fedoseev, A.V. Shishulina. Tech. Phys. 64, 4, 512 (2019)
- V.P. Skripov, A.V. Skripov. Sov. Phys. Usp. 22, 389 (1979)
- C.N. Nanev. Theory of Nucleation. In Handbook of Crystal Growth. Elsevier. 1, 315 (2015)
- M.P. Anisimov. Russ. Chem. Rev., 72, 591 (2003)
- N. Ziethen, J. Kirschbaum, D. Zwicker. Phys. Rev. Lett. 130, 248201 (2023).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.