Investigation of the relationship between the defects density in light-emitting InGaN/GaN heterostructures and the parameters of the P-I characteristic
Frolov I. V.
1, Sergeev V. A.
1, Radaev O. A.
1, Kazankov A. A.
1,21Kotel’nikov Institute of Radio Engineering and Electronics (Ulyanovsk Branch), Russian Academy of Sciences, Ulyanovsk, Russia
2Ulyanovsk State Technical University, Ulyanovsk, Russia
Email: ilya-frolov88@mail.ru, sva@ulstu.ru, oleg.radaev.91@mail.ru, kazanaa1992@mail.ru
The article shows that the parameter of the function that approximates the P-I characteristic of an InGaN/GaN LED in the low current range, which determines the degree of nonlinearity of the P-I characteristic, is inversely proportional to the square root of the defects density. This dependence is confirmed by experimentally established strong correlations between this parameter and the level of low-frequency noise of LEDs and the parameters of heterostructure luminescence inhomogeneity in the microplasma breakdown mode. This parameter can be used to assess the defectness of light-emitting heterostructures. Keywords: light-emitting heterostructure, defect density, P-I characteristic, low-frequency noise, microplasma breakdown.
- C.D. Santi, M. Meneghini, G. Meneghesso, E. Zanoni. Microelectronics Reliability, 64, 623 (2016). DOI: 10.1016/j.microrel.2016.07.118
- R.I. Made, Yu Gao, G.J. Syaranamual, W.A. Sasangka, L. Zhang, Xuan Sang Nguyen, Y.Y. Tay, J.S. Herrin, C.V. Thompson, C.L. Gan. Microelectronics Reliability, 76--77, 561 (2017). DOI: 10.1016/j.microrel.2017.07.072
- A.A. Bogdanov. Svetotechnika, 1, 13-22 (2015). (in Russian)
- V.A. Kosarev. Vestnik ULSTU, 1, 30 (2020). (in Russian)
- V.A. Sergeev, O.A. Radaev, I.V. Frolov. Pribory i tehnika eksperimenta, 6, 103 (2023) (in Russian). DOI: 10.31857/S0032816223060071
- L.-W. Xu, K.-Y. Qian. IEEE Photonics J., 9 (4), 8201309 (2017). DOI: 10.1109/JPHOT.2017.2703851
- A.V. Belyakov, A.V. Klyuev, A.V. Yakimov. Fluctuation and Noise Letters, 16 (3) 1750030 (2017). DOI: 10.1142/S0219477517500304
- A.V. Klyuev, A.V. Yakimov. Physica B: Condensed Matter, 440, 145 (2014). DOI: 10.1016/j.physb.2014.01.021
- S. Sawyer, S.L. Rumyantsev, M.S. Shur, N. Pala, Yu. Bilenko, J.P. Zhang, X. Hu, A. Lunev, J. Deng, R. Gaska. J. Appl. Phys., 100, 034504 (2006). DOI: 10.1063/1.2204355
- Z.L. Li, S. Tripathy, P.T. Lai, H.W. Choi. J. Appl. Phys., 106, 094507 (2009). DOI: 10.1063/1.3253754
- V.P. Veleshchuk, A.I. Vlasenko, M.P. Kiselyuk, O.V. Liashenko. Zhurnal prikladnoy spektroskopii 80, (1), 121 (2013) (in Russian)
- O.A. Radaev, V.A. Sergeev, I.V. Frolov. Physicheskie osnovy priborostroeniya. 12 (3), 23-27 (2023). (in Russian) DOI: 10.25210/jfop-2303-UMNPWQ. EDN: UMNPWQ
- V.A. Sergeev, I.V. Frolov, A.A. Shirokov. Izvestiya vuzov. Elektronika, 20 (6), 598-606 (2015). (in Russian)
- A.A. Kazankov, V.A. Sergeev, I.V. Frolov. V sb.: Vuzovskaja nauka v sovremennoi sostoyanie (ULSTU, Ulyanovsk, 2023), p. 69. (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.