Physical basis of the optical non-destructive method of testing of the gas composition in the cells used in quantum sensors
Sviridov F. S.
1,2, Pazgalev A. S.
1, Vershovskii A. K.
11Ioffe Institute, St. Petersburg, Russia
2Alferov University, Russian Academy of Sciences, St. Petersburg, Russia
Email: anatoly.pazgalev@mail.ioffe.ru, antver@mail.ioffe.ru
We consider phenomena that significantly affect the accuracy of the spectral method of non-destructive optical quality control of cells with alkali metal vapor and buffer gases used as sensitive elements of miniature quantum sensors - frequency standards, magnetometers, gyroscopes. The method makes it possible to determine the composition of a one- or two-component gas mixture based on the results of measuring the broadening and shift of the optical spectral lines of an alkali metal by collisions with a buffer gas. In this work, using 87Rb as an example, we demonstrate that the results of such measurements are affected by distortions of line contours resulting from optical hyperfine pumping. A theoretical description of these effects and ways to eliminate the limitations they introduce are proposed. Keywords: Spectroscopy of alkali metals, optical control of gas composition, optical pumping, balance equations for populations.
- N.N. Ledentsov, O.Yu. Makarov, V.A. Shchukin, V.P. Kalosha, N. Ledentsov, L. Chrochos, M.B. Sanayeh, J.P. Turkiewicz, J. Light. Technol., 40 (6), 1749 (2022). DOI: 10.1109/JLT.2022.3149372
- P. Cash, W. Krzewick, P. Machado, K.R. Overstreet, M. Silveira, M. Stanczyk, D. Taylor, X. Zhang. In: 2018 European Frequency and Time Forum (EFTF) (2018), p. 65-71. DOI: 10.1109/EFTF.2018.8408999
- P. Zhou, W. Quan, K. Wei, Z. Liang, J. Hu, L. Liu, G. Hu, A. Wang, M.Ye. Biosensors, 12 (12), 1098 (2022). DOI: 10.3390/bios12121098
- N. A. Maleev, S. A. Blokhin, M. A. Bobrov, A.G. Kuz'menkov, M.M. Kulagina, V.M. Ustinov. Gyroscopy Navig., 9 (3), 177 (2018). DOI: 10.1134/S2075108718030057
- Y. Jia, Y. Liu, C. Chen, R. Chen. In: AOPC 2023: Laser Technology and Applications; and Optoelectronic Devices and Integration. Vol. 12959 (SPIE, 2023), p. 29-38. DOI: 10.1117/12.2692791
- O. Kozlova, S. Guerandel, E. de Clercq. Phys. Rev. A, 83 (6), 062714 (2011). DOI: 10.1103/PhysRevA.83.062714
- N. Almat, M. Gharavipour, W. Moreno, F. Gruet, C. Affolderbach, G. Mileti. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67 (1), 207 (2020). DOI: 10.1109/TUFFC.2019.2940903
- A. Andalkar, R.B. Warrington. Phys. Rev. A, 65 (3), 032708 (2002). DOI: 10.1103/PhysRevA.65.032708
- G.A. Pitz, A.J. Sandoval, T.B. Tafoya, W.L. Klennert, D.A. Hostutler. J. Quant. Spectrosc. Radiat. Transf., 140, 18 (2014). DOI: 10.1016/j.jqsrt.2014.01.024
- J. Peng, Z. Liu, K. Yin, S. Zou, H. Yuan. J. Phys. Appl. Phys., 55 (36), 365005 (2022). DOI: 10.1088/1361-6463/ac73c0
- W. Happer, T.G. Walker, Y.-Y. Jau. Optically Pumped Atoms (Wiley, 2010)
- T. Scholtes, S. Pustelny, S. Fritzsche, V. Schultze, R. Stolz, H.-G. Meyer. Phys. Rev. A, 94 (1), 013403 (2016). DOI: 10.1103/PhysRevA.94.013403
- L.M. Rushton, L. Elson, A. Meraki, K. Jensen. Phys. Rev. Appl., 19 (6), 064047 (2023). DOI: 10.1103/PhysRevApplied.19.064047
- W. Happer. Rev. Mod. Phys., 44 (2), 169 (1972). DOI: 10.1103/RevModPhys.44.169
- V.S. Letokhov. Sov. Phys. Uspekhi, 19 (2), 109 (1976). DOI: 10.1070/PU1976v019n02ABEH005132
- M. Mills, P. Puri, Y. Yu, A. Derevianko, C. Schneider, E.R. Hudson. Phys. Rev. A, 96 (3), 033402 (2017). DOI: 10.1103/PhysRevA.96.033402
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.