Analytical solution for the populations of the energy levels of alkali metals under optical pumping and mixing of excited state sublevels
Sviridov F. S. 1,2, Vershovskii A. K. 1
1Ioffe Institute, St. Petersburg, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
Email: antver@mail.ioffe.ru

PDF
The paper presents the results of an analytical calculation of the system of balance equations describing the populations of the energy levels of the ground state and the total population of the excited state of alkali metals under optical pumping under conditions when collisions with a buffer gas cause complete mixing of the sublevels of the excited state. This situation is realized in a number of quantum sensors, such as frequency standards, gyroscopes, magnetometers, using a cell with alkali metal vapor and a buffer inert gas as a sensitive element. A comparison with the experiment is given. The results can be used for spectroscopic non-destructive testing of the gas composition of such cells. Keywords: optically detected magnetic resonance, optical pumping, relaxation.
  1. C.L. Degen, F. Reinhard, P. Cappellaro. Rev. Mod. Phys., 89 (3), 035002 (2017). DOI: 10.1103/RevModPhys.89.035002
  2. S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, J. Moreland. Opt. Express, 13 (4), 1249 (2005). DOI: 10.1364/OPEX.13.001249
  3. J. Kitching. Appl. Phys. Rev., 5 (3), 238 (2018). DOI: 10.1063/1.5026238
  4. D. Budker, M. Romalis. Nature Physics, 3, 227 (2007). DOI: 10.1038/nphys566
  5. T.H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe. Biomed. Opt. Express, 3 (5), 981 (2012). DOI: 10.1364/BOE.3.000981
  6. H. Korth, K. Strohbehn, F. Tejada, A.G. Andreou, J. Kitching, S. Knappe, S.J. Lehtonen, S.M. London, M. Kafel. J. Geophys. Res. Space Physics, 121 (8), 7870 (2016). DOI: 10.1002/2016JA022389
  7. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S.S. Meyer, L.D. Munoz, K.J. Mullinger, T.M. Tierney, S. Bestmann, G.R. Barnes, R. Bowtell, M.J. Brookes. Nature, 555, 657 (2018). DOI: 10.1038/nature26147
  8. O. Alem, K.J. Hughes, I. Buard, T.P. Cheung, T. Maydew, A. Griesshammer, K. Holloway, A. Park, V. Lechuga, C. Coolidge et al. Frontiers in Neuroscience, 17, 1014 (2023). DOI: 10.3389/fnins.2023.1190310
  9. D. Meyer, M. Larsen. Gyroscopy and Navigation, 5 (2), 75 (2014). DOI: 10.1134/S2075108714020060
  10. A.K. Vershovskii, Yu.A. Litmanovich, A.S. Pazgalev, V.G. Peshekhonov. Gyroscopy and Navigation, 9 (3), 162 (2018). DOI: 10.1134/S2075108718030100
  11. O. Kozlova, S. Guerandel, E. de Clercq. Phys. Rev. A, 83 (6), 062714 (2011). DOI: 10.1103/PhysRevA.83.062714
  12. N. Almat, M. Gharavipour, W. Moreno, F. Gruet, C. Affolderbach, G. Mileti. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67 (1), 207 (2020). DOI: 10.1109/TUFFC.2019.2940903
  13. G.A. Pitz, A.J. Sandoval, T.B. Tafoya, W.L. Klennert, D.A. Hostutler. JQSRT, 140, 18 (2014). DOI: 10.1016/j.jqsrt.2014.01.024
  14. A. Andalkar, R.B. Warrington. Phys. Rev. A, 65 (3), 032708 (2002). DOI: 10.1103/PhysRevA.65.032708
  15. J. Peng, Z. Liu, K. Yin, S. Zou, H. Yuan J. Phys. D, 55 (36), 365005 (2022). DOI: 10.1088/1361-6463/ac73c0
  16. F.A. Franz. Phys. Rev., 141 (1), 105 (1966). DOI: 10.1103/PhysRev.141.105
  17. F.A. Franz, J.R. Franz. Phys. Rev., 148 (1), 82 (1966). DOI: 10.1103/PhysRev.148.82
  18. W. Happer. Rev. Mod. Phys., 44 (2), 169 (1972). DOI: 10.1103/RevModPhys.44.169
  19. E.N. Popov, V.A. Bobrikova, S.P. Voskoboinikov, K.A. Barantsev, S.M. Ustinov, A.N. Litvinov, A.K. Vershovskii, S.P. Dmitriev, V.A. Kartoshkin, A.S. Pazgalev, M.V. Petrenko. JETP Letters, 108 (8), 513 (2018). DOI: 10.1134/S0021364018200122
  20. K.A. Barantsev, E.N. Popov, A.N. Litvinov. Quant. Electron., 47 (9), 812 (2017). DOI: 10.1070/QEL16447
  21. A. Van Lange, P. Van der Straten, D. Van Oosten. J. Phys. B, 53 (12), 125402 (2020). DOI: 10.1088/1361-6455/ab7fc2
  22. A.K. Vershovskii, A.S. Pazgalev, F.S. Sviridov. Opt. Spectrosc. 132 (12), 1210-1213 (2024)
  23. I.I. Sobelman. Atomic Spectra and Radiative Transitions, vol. 12 (Springer Science \& Business Media, 2012)
  24. D. Varshalovich, A. Moskalev, V. Khersonskii. Quantum Theory of Angular Momentum (World scientific, 1988)
  25. S. Schott, A. Steinbacher, J. Buback, P. Nuernberger, T. Brixner. J. Phys. B, 47 (12), 124014 (2014). DOI: 10.1088/0953-4075/47/12/124014
  26. A.K. Vershovskii, A.S. Pazgalev. Technical Physics, 53 (5), 646 (2008). DOI: 10.1134/S1063784208050198.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru