Analytical solution for the populations of the energy levels of alkali metals under optical pumping and mixing of excited state sublevels
Sviridov F. S.
1,2, Vershovskii A. K.
11Ioffe Institute, St. Petersburg, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
Email: antver@mail.ioffe.ru
The paper presents the results of an analytical calculation of the system of balance equations describing the populations of the energy levels of the ground state and the total population of the excited state of alkali metals under optical pumping under conditions when collisions with a buffer gas cause complete mixing of the sublevels of the excited state. This situation is realized in a number of quantum sensors, such as frequency standards, gyroscopes, magnetometers, using a cell with alkali metal vapor and a buffer inert gas as a sensitive element. A comparison with the experiment is given. The results can be used for spectroscopic non-destructive testing of the gas composition of such cells. Keywords: optically detected magnetic resonance, optical pumping, relaxation.
- C.L. Degen, F. Reinhard, P. Cappellaro. Rev. Mod. Phys., 89 (3), 035002 (2017). DOI: 10.1103/RevModPhys.89.035002
- S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, J. Moreland. Opt. Express, 13 (4), 1249 (2005). DOI: 10.1364/OPEX.13.001249
- J. Kitching. Appl. Phys. Rev., 5 (3), 238 (2018). DOI: 10.1063/1.5026238
- D. Budker, M. Romalis. Nature Physics, 3, 227 (2007). DOI: 10.1038/nphys566
- T.H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe. Biomed. Opt. Express, 3 (5), 981 (2012). DOI: 10.1364/BOE.3.000981
- H. Korth, K. Strohbehn, F. Tejada, A.G. Andreou, J. Kitching, S. Knappe, S.J. Lehtonen, S.M. London, M. Kafel. J. Geophys. Res. Space Physics, 121 (8), 7870 (2016). DOI: 10.1002/2016JA022389
- E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S.S. Meyer, L.D. Munoz, K.J. Mullinger, T.M. Tierney, S. Bestmann, G.R. Barnes, R. Bowtell, M.J. Brookes. Nature, 555, 657 (2018). DOI: 10.1038/nature26147
- O. Alem, K.J. Hughes, I. Buard, T.P. Cheung, T. Maydew, A. Griesshammer, K. Holloway, A. Park, V. Lechuga, C. Coolidge et al. Frontiers in Neuroscience, 17, 1014 (2023). DOI: 10.3389/fnins.2023.1190310
- D. Meyer, M. Larsen. Gyroscopy and Navigation, 5 (2), 75 (2014). DOI: 10.1134/S2075108714020060
- A.K. Vershovskii, Yu.A. Litmanovich, A.S. Pazgalev, V.G. Peshekhonov. Gyroscopy and Navigation, 9 (3), 162 (2018). DOI: 10.1134/S2075108718030100
- O. Kozlova, S. Guerandel, E. de Clercq. Phys. Rev. A, 83 (6), 062714 (2011). DOI: 10.1103/PhysRevA.83.062714
- N. Almat, M. Gharavipour, W. Moreno, F. Gruet, C. Affolderbach, G. Mileti. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67 (1), 207 (2020). DOI: 10.1109/TUFFC.2019.2940903
- G.A. Pitz, A.J. Sandoval, T.B. Tafoya, W.L. Klennert, D.A. Hostutler. JQSRT, 140, 18 (2014). DOI: 10.1016/j.jqsrt.2014.01.024
- A. Andalkar, R.B. Warrington. Phys. Rev. A, 65 (3), 032708 (2002). DOI: 10.1103/PhysRevA.65.032708
- J. Peng, Z. Liu, K. Yin, S. Zou, H. Yuan J. Phys. D, 55 (36), 365005 (2022). DOI: 10.1088/1361-6463/ac73c0
- F.A. Franz. Phys. Rev., 141 (1), 105 (1966). DOI: 10.1103/PhysRev.141.105
- F.A. Franz, J.R. Franz. Phys. Rev., 148 (1), 82 (1966). DOI: 10.1103/PhysRev.148.82
- W. Happer. Rev. Mod. Phys., 44 (2), 169 (1972). DOI: 10.1103/RevModPhys.44.169
- E.N. Popov, V.A. Bobrikova, S.P. Voskoboinikov, K.A. Barantsev, S.M. Ustinov, A.N. Litvinov, A.K. Vershovskii, S.P. Dmitriev, V.A. Kartoshkin, A.S. Pazgalev, M.V. Petrenko. JETP Letters, 108 (8), 513 (2018). DOI: 10.1134/S0021364018200122
- K.A. Barantsev, E.N. Popov, A.N. Litvinov. Quant. Electron., 47 (9), 812 (2017). DOI: 10.1070/QEL16447
- A. Van Lange, P. Van der Straten, D. Van Oosten. J. Phys. B, 53 (12), 125402 (2020). DOI: 10.1088/1361-6455/ab7fc2
- A.K. Vershovskii, A.S. Pazgalev, F.S. Sviridov. Opt. Spectrosc. 132 (12), 1210-1213 (2024)
- I.I. Sobelman. Atomic Spectra and Radiative Transitions, vol. 12 (Springer Science \& Business Media, 2012)
- D. Varshalovich, A. Moskalev, V. Khersonskii. Quantum Theory of Angular Momentum (World scientific, 1988)
- S. Schott, A. Steinbacher, J. Buback, P. Nuernberger, T. Brixner. J. Phys. B, 47 (12), 124014 (2014). DOI: 10.1088/0953-4075/47/12/124014
- A.K. Vershovskii, A.S. Pazgalev. Technical Physics, 53 (5), 646 (2008). DOI: 10.1134/S1063784208050198.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.