Investigation of non-uniformity of properties of niobium nitride thin films obtained by atomic layer deposition
Shibalov M. V.1, Shibalov A. A.1, Shevchenko A. R.1, Mumlyakov A. M.1, Filippov I. A.1, Tarkhov M. A.1,2
1 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
2National Research University “Moscow Power Engineering Institute”, Moscow, Russia
Email: maxshibalov@gmail.com
In this work we studied the non-uniformity of properties of niobium nitride thin film obtained by atomic layer deposition enhanced by plasma on 100 mm silicon substrate with a layer of silicon oxide. The non-uniformity of the surface resistivity distribution was 7% at a diameter of 92 mm. The film thickness distribution non-uniformity measured by X-ray reflectometry at the central part of the wafer and at 4 locations 40 mm away from the centre was 4%. X-ray diffraction performed at the same locations on the wafer showed no visible reflex shifts. The variation in the lattice parameter for the different regions was only 0.06%. Superconducting measurements showed a maximum deviation of 1.6% for the superconducting transition temperature and 7% for the critical current density at a diameter of 80 mm. Keywords: atomic layer deposition, plasma, niobuim nitride, non-uniformity, critical temperature, critical current density.
- M.V. Shibalov, A.M. Mumlyakov, I.V. Trofimov, E.R. Timofeeva, A.P. Sirotina, E.A. Pershina, A.M. Tagachenkov, Y.V. Anufriev, E.V. Zenova, M.A. Tarkhov. Superconductor Science Technol., 34 (8), 085016 (2021). DOI: 10.1088/1361-6668/ac0d09
- M.V. Shibalov, A.P. Sirotina, E.A. Pershina, V.P. Martovitskii, A.A. Shibalova, A.M. Mumlyakov, I.V. Trofimov, E.R. Timofeeva, N.V. Porokhov, E.V. Zenova, M.A. Tarkhov. Appl. Surf. Sci., 612, 155697 (2023). DOI: 10.1016/j.apsusc.2022.155697
- M.J. Sowa, Y. Yemane, J. Zhang, J.C. Palmstrom, L. Ju, N.C. Strandwitz, B.P. Fritz, J. Provine. J. Vacuum Sci. Technol. A, 35 (1), (2017). DOI: 10.1116/1.4972858
- S.M. George. Chem. Rev., 110 (1), 111 (2010). DOI: 10.1021/cr900056b
- M. Ritala, M. Leskela. Handbook of Thin Films (2002). DOI: 10.1016/B978-012512908-4/50005-9
- S.A. Ryabchun, I.V. Tretyakov, M.I. Finkel, S.N. Maslennikov, N.S. Kaurova, V.A. Seleznev, B.M. Voronov, G.N. Goltsman. Signal, 270, 320 (2008)
- L. Parlato, G. Peluso, G. Pepe, U.S. di Uccio, R. Cristiano, E. Espositio, L. Frunzio, S. Pagano, H. Akoh, H. Nakagawa, S. Takada, M. Gutsche, H. Kraus. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 370 (1), 95 (1996). DOI: 10.1016/0168-9002(95)01060-2
- B.K. Tan, F. Boussaha, C. Chaumont, J. Longden, J.N. Montilla. Open Research Europe, 2, (2022)
- G.N. Gol'Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski. Appl. Phys. Lett., 79 (6), 705 (2001). DOI: 10.1063/1.1388868
- F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R.J. Molnar, K.K. Berggren. Nano Lett., 11 (5), 2048 (2011). DOI: 10.1021/nl2005143
- G.K.G. Hohenwarter, E.K. Track, R.E. Drake, R. Patt. IEEE Transactions Appl. Superconductivity, 3 (1), 2804 (1993). DOI: 10.1109/77.233499
- Y.Z. Wang, W.J. Zhang, X.Y. Zhang, G.Z. Xu, J.M. Xiong, Z.G. Chen, Y. Hong, X. Liu, P. Yuan, L. Wu, Z. Wang, L.X. You. arXiv preprint arXiv:2402.02311. (2024)
- G.G. Taylor, D. Morozov, N.R. Gemmell, K. Erotokritou, S. Miki, H. Terai, R.H. Hadfield. Opt. Express, 27 (26), 38147 (2019). DOI: 10.1364/OE.27.038147
- D. Koushik, M. Jov st, A. Duv cinskas, C. Burgess, V. Zardetto, C. Weijtens, M.A. Verheijen, W.M.M. Kessels, S. Albrecht, M. Creatore. J. Mater. Chem. C, 7 (40), 12532 (2019). DOI: 10.1039/C9TC04282B
- J.A. Oke, T.C. Jen. J. Mater. Res. Technol., (2022). DOI: 10.1016/j.jmrt.2022.10.064
- K.E. Elers, T. Blomberg, M. Peussa, B. Aitchison, S. Haukka, S. Marcus. Chem. Vapor Deposition, 12 (1), 13 (2006). DOI: 10.1002/cvde.200500024
- E. Knehr, M. Ziegler, S. Linzen, K. Ilin, P. Schanz, J. Plentz, M. Diegel, H. Schmidt, E. Il'ichev, M. Siegel. J. Vacuum Sci. Technol. A, 39 (5), (2021). DOI: 10.1116/6.0001126
- C.T. Lennon, Y. Shu, J.C. Brennan, D.K. Namburi, V. Varghese, D.T. Hemakumara, L.A. Longcha, S. Srinath, R.H. Hadfield. Mater. Quant. Technol., 3 (4), 045401 (2023). DOI: 10.1088/2633-4356/ad0aa5
- D. Dochev, V. Desmaris, A. Pavolotsky, D. Meledin, Z. Lai, A. Henry, E. Janzen, E. Pippel, J. Woltersdorf, V. Belitsky. Superconductor Sci. Technol., 24 (3), 035016 (2011). DOI: 10.1088/0953-2048/24/3/035016
- R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J.C. Villegier, J.P. Poizat. New J. Phys., 6 (1), 129 (2004). DOI: 10.1088/1742-6596/97/1/012087
- R. Espiau de Lamaestre, P. Odier, J.C. Villegier. Appl. Phys. Lett., 91 (23), (2007). DOI: 10.1063/1.2820607
- M. Ziegler, S. Linzen, S. Goerke, U. Bruckner, J. Plentz, J. Dellith, A. Himmerlich, M. Himmerlich, U. Hubner, S. Krischok, H.G. Meyer. IEEE Transactions Appl. Superconductivity, 27 (7), 1 (2017). DOI: 10.1109/TASC.2017.2744326
- S. Linzen, M. Ziegler, O.V. Astafiev, M. Schmelz, U. Hubner, M. Diegel, E. Il'ichev, H.G. Meyer. Supercond. Sci. Technol., 30 (3), 035010 (2017). DOI: 10.1088/1361-6668/aa572a