Phase transition and strength properties of eutectic lead-bismuth alloy in the temperature range of 20-110oC under shock loading
Savinykh A. S. 1,2, Garkushin G. V. 1,2, Razorenov S. V. 1,2
1Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
2Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: savas@ficp.ac.ru, garkushin@ficp.ac.ru, razsv@ficp.ac.ru

PDF
The phase transition parameters of the samples of the eutectic alloy Bi - 56.5 mass%, Pb - 43.5 mass% 0.2-8 mm thick were measured at initial temperatures of 20, 60, 96 and 111oC and a maximum shock compression stress of ~ 4 GPa. In experiments, the structure of compression and rarefaction waves was recorded using the VISAR laser Doppler velocimeter. A decrease in the phase transition stress was revealed as the compression wave propagated through the sample, the initial and maximum transition rates were estimated and the times of the corresponding transformations were determined. The measurements of the values of the Hugoniot elastic limit and the spall strength at stresses above the phase transition stress were carried out. Keywords: lead-bismuth eutectic alloy, shock waves, phase transition, temperature, Hugoniot elastic limit, spall strength.
  1. S.S. Kutateladze, V.M. Borishansky, I.I. Novikov, O.S. Fedynsky. Zhidkometallicheskie teplonositeli (Atomizdat, M., 1958) (in Russian)
  2. V.S. Chirkin. Teplofizicheskie svojstva materialov yadernoj tekhniki, Spravochnik (Atomizdat, M., 1968) (in Russian)
  3. K. Morita, V. Sobolev, M. Flad. J. Nucl. Mater., 362, 227 (2007). DOI: 10.1016/j.jnucmat.2007.01.048
  4. P.S. Popel', D.A. Yagodin, A.G. Mozgovoi, M.A. Pokrasin. High Temp, 48, 181 (2010). DOI: 10.1134/S0018151X10020070
  5. V.P. Sobolev, P. Schuurmans, G. Benamati. J. Nucl. Mater., 376, 358 (2008). DOI: 10.1016/j.jnucmat.2008.02.030
  6. Z. Rozenberg. J. Appl. Phys., 56 (11), 3328 (1984). DOI: 10.1063/1.333855
  7. R.E. Duff, F.S. Minshall. Phys. Rev., 108 (5), 1207 (1957). DOI: 10.1103/PhysRev.108.1207
  8. D.B. Larson. J. Appl. Phys., 38 (4) 1541 (1967). DOI: 10.1063/1.1709720
  9. J.R. Asay. J. Appl. Phys., 48, 2832 (1977). DOI: 10.1063/1.324144
  10. M.N. Pavlovskii, V.V. Kommissarov. Sov. Phys. JETP, 83 (6), 2146 (1982)
  11. E.Y. Tonkov. Fazovye prevrashcheniya soedinenij pri vysokom davlenii (Metallurgiya, M., 1988), vol. 1. (in Russian)
  12. A.S. Savinykh, G.V. Garkushin, S.V. Razorenov. Tech. Phys., 68 (3), 3539 (2023). DOI: 10.21883/TP.2023.03.55809.269-22
  13. A.A. Aleksandrov, K.A. Orlov, V.F. Ochkov. Svojstva i protsessy rabochikh tel i materialov atomnoj energetiki(Izdat. dom MEI, M., 2012) (in Russian)
  14. G.V. Garkushin, A.S. Savinykh, G.I. Kanel, S.V. Razorenov. JETP, 128 (2), 268 (2019). DOI: 10.1134/S1063776119010114
  15. L.M. Barker, R.E. Hollenbach. J. Appl. Phys., 43, 4669 (1972). DOI: 10.1063/1.1660986
  16. G.I. Kanel. Int. J. Fract., 163 (1), 173 (2010). DOI: 10.1007/s10704-009-9438-0
  17. G.I. Kanel. J. Appl. Mech. Tech. Ph. 42, 358 (2001). DOI: 10.1023/A:1018804709273
  18. E.B. Zaretsky, G.I. Kanel. J. Appl. Phys., 117, 195901 (2015). DOI: 10.1063/1.4921356
  19. G.I. Kanel, S.V. Razorenov, V.E. Fortov. Shock-Wave Phenomena and Properties of Condensed Matter (Springer, 2004)
  20. E.B. Zaretsky. J. Appl. Phys., 106, 023510 (2009). DOI: 10.1063/1.3174442
  21. G.I. Kanel, G.S. Bezruchko, A.S. Savinykh, V.V. Milyavskii. K.V. Khishchenko. High Temp., 48, 806 (2010). DOI: 10.1134/S0018151X10060064
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru