Determination of local thermal conductivity of soldered joints of InGaP/Ga(In)As/Ge heterostructure with heat-dissipating AlN ceramics based on Sn42Bi58 alloy by laser photodeflection microscopy
Glazov A. L.1, Kalinovskii V.S.1, Kapralov A.A.1, Kontrosh E.V.1, Muratikov K.L. 1, Prudchenko K.K.1
1Ioffe Institute, St. Petersburg, Russia
Email: glazov.holo@mail.ioffe.ru, Vitak.sopt@mail.ioffe.ru, gga_holo@mail.ru, Kontrosh@mail.ioffe.ru, klm.holo@mail.ioffe.ru, Prudchenkokk@mail.ioffe.ru

PDF
The method of laser scanning photodeflection microscopy was used to study heat flows through soldered joints in the kilohertz modulation range. Local thermal conductivities inside the solders made using flux and fluxless solders based on the eutectic alloy Sn42Bi58 were estimated. It was shown that the thermal conductivity of the solder differs from the tabular thermal conductivity of the alloy and depends on the type of solder and soldering technology. Increasing the pressure on the elements being joined during soldering allows reducing the thermal resistance of the solder. Keywords: lead-free solders, thermal resistance, temperature waves, scanning microscopy.
  1. M. Aamir, R. Muhammad, M. Tolouei-Rad, K. Giasin, V.V. Silberschmidt, Solder. Surf. Mount Technol., 32 (2), 115 (2020). DOI: 10.1108/SSMT-11-2018-0046
  2. I. Manasijevic, L. Balanovic, U. Stamenkovic, M. Gorgievski, V. Cosovic, Mater. Testing, 62 (2), 184 (2020). DOI: 10.3139/120.111470
  3. S.R. Mang, H. Choi, H.J. Lee, J. Korean Phys. Soc., 82 (11), 1105 (2023). DOI: 10.1007/s40042-023-00788-9
  4. X. Rao, H. Liu, S. Wang, J. Song, C. Jin, C. Xiao, Therm. Sci., 27 (5), 4193 (2023). DOI: 10.2298/TSCI220805061R
  5. G. Krishnan, A. Jain, Int. Commun. Heat Mass Transfer, 140, 106482 (2023). DOI: 10.1016/j.icheatmasstransfer.2022.106482
  6. F. Jia, L. Niu, Y. Xi, Y. Qiu, H. Ma, C. Yang, Int. J. Heat Mass Transfer, 202, 123719 (2023). DOI: 10.1016/j.ijheatmass-transfer.2022.123719
  7. N. Jiang, L. Zhang, L.L. Gao, X.-G. Song, P. He, J. Mater. Sci.: Mater. Electron., 32 (18), 22731 (2021). DOI: 10.1007/s10854-021-06820-7
  8. F.Q. Hu, Q.K. Zhang, J.J. Jiang, Z.L. Song, Mater. Lett., 214, 142 (2018). DOI: 10.1016/j.matlet.2017.11.127
  9. Q. Wang, X. Cheng, X. Wang, T. Yang, Q. Cheng, Z. Liu, Z. Lv, Materials, 16 (15), 5325 (2023). DOI: 10.3390/ma16155325
  10. M.M. Billah, Q. Chen, Composites B, 129, 162 (2017). DOI: 10.1016/j.compositesb.2017.07.071
  11. K.N. Bov zinovic, D.M. Manasijevic, L.T. Balanovic, M.D. Gorgievski, U.S. Stamenkovic, M.S. Markovic, Z.D. Mladenovic, Hem. Ind., 75 (4), 227 (2021). DOI: 10.2298/HEMIND210119021B
  12. E.S. Makarova, A.V. Asach, I.L. Tkhorzhevskiy, V.E. Fomin, A.V. Novotelnova, V.V. Mitropov, Semiconductors, 56 (2), 141 (2022). DOI: 10.21883/SC.2022.02.53700.30a
  13. A. Glazov, K. Muratikov, Sensors, 23 (7), 3590 (2023). DOI: 10.3390/s23073590
  14. A.L. Glazov, V.S. Kalinovskii, K.L. Muratikov, Int. J. Heat Mass Transfer, 120, 870 (2018). DOI: 10.1016/j.ijheatmasstransfer.2017.12.049
  15. https://pfarr.de/de/legierungsliste/
  16. http://www.koki.org/pdf/B1-07_TB48-M742_E.pdf
  17. A.L. Glazov, O.S. Vasyutinskii, Tech. Phys. Lett., 40 (12), 1130 (2014). DOI: 10.1134/S1063785014120244
  18. A.L. Glazov, V.S. Kalinovskii, A.V. Nashchekin, K.L. Muratikov, J. Alloys Compd., 800, 23 (2019). DOI: 10.1016/j.jallcom.2019.06.054

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru