Determination of local thermal conductivity of soldered joints of InGaP/Ga(In)As/Ge heterostructure with heat-dissipating AlN ceramics based on Sn42Bi58 alloy by laser photodeflection microscopy
Glazov A. L.
1, Kalinovskii V.S.
1, Kapralov A.A.
1, Kontrosh E.V.
1, Muratikov K.L.
1, Prudchenko K.K.
11Ioffe Institute, St. Petersburg, Russia
Email: glazov.holo@mail.ioffe.ru, Vitak.sopt@mail.ioffe.ru, gga_holo@mail.ru, Kontrosh@mail.ioffe.ru, klm.holo@mail.ioffe.ru, Prudchenkokk@mail.ioffe.ru
The method of laser scanning photodeflection microscopy was used to study heat flows through soldered joints in the kilohertz modulation range. Local thermal conductivities inside the solders made using flux and fluxless solders based on the eutectic alloy Sn42Bi58 were estimated. It was shown that the thermal conductivity of the solder differs from the tabular thermal conductivity of the alloy and depends on the type of solder and soldering technology. Increasing the pressure on the elements being joined during soldering allows reducing the thermal resistance of the solder. Keywords: lead-free solders, thermal resistance, temperature waves, scanning microscopy.
- M. Aamir, R. Muhammad, M. Tolouei-Rad, K. Giasin, V.V. Silberschmidt, Solder. Surf. Mount Technol., 32 (2), 115 (2020). DOI: 10.1108/SSMT-11-2018-0046
- I. Manasijevic, L. Balanovic, U. Stamenkovic, M. Gorgievski, V. Cosovic, Mater. Testing, 62 (2), 184 (2020). DOI: 10.3139/120.111470
- S.R. Mang, H. Choi, H.J. Lee, J. Korean Phys. Soc., 82 (11), 1105 (2023). DOI: 10.1007/s40042-023-00788-9
- X. Rao, H. Liu, S. Wang, J. Song, C. Jin, C. Xiao, Therm. Sci., 27 (5), 4193 (2023). DOI: 10.2298/TSCI220805061R
- G. Krishnan, A. Jain, Int. Commun. Heat Mass Transfer, 140, 106482 (2023). DOI: 10.1016/j.icheatmasstransfer.2022.106482
- F. Jia, L. Niu, Y. Xi, Y. Qiu, H. Ma, C. Yang, Int. J. Heat Mass Transfer, 202, 123719 (2023). DOI: 10.1016/j.ijheatmass-transfer.2022.123719
- N. Jiang, L. Zhang, L.L. Gao, X.-G. Song, P. He, J. Mater. Sci.: Mater. Electron., 32 (18), 22731 (2021). DOI: 10.1007/s10854-021-06820-7
- F.Q. Hu, Q.K. Zhang, J.J. Jiang, Z.L. Song, Mater. Lett., 214, 142 (2018). DOI: 10.1016/j.matlet.2017.11.127
- Q. Wang, X. Cheng, X. Wang, T. Yang, Q. Cheng, Z. Liu, Z. Lv, Materials, 16 (15), 5325 (2023). DOI: 10.3390/ma16155325
- M.M. Billah, Q. Chen, Composites B, 129, 162 (2017). DOI: 10.1016/j.compositesb.2017.07.071
- K.N. Bov zinovic, D.M. Manasijevic, L.T. Balanovic, M.D. Gorgievski, U.S. Stamenkovic, M.S. Markovic, Z.D. Mladenovic, Hem. Ind., 75 (4), 227 (2021). DOI: 10.2298/HEMIND210119021B
- E.S. Makarova, A.V. Asach, I.L. Tkhorzhevskiy, V.E. Fomin, A.V. Novotelnova, V.V. Mitropov, Semiconductors, 56 (2), 141 (2022). DOI: 10.21883/SC.2022.02.53700.30a
- A. Glazov, K. Muratikov, Sensors, 23 (7), 3590 (2023). DOI: 10.3390/s23073590
- A.L. Glazov, V.S. Kalinovskii, K.L. Muratikov, Int. J. Heat Mass Transfer, 120, 870 (2018). DOI: 10.1016/j.ijheatmasstransfer.2017.12.049
- https://pfarr.de/de/legierungsliste/
- http://www.koki.org/pdf/B1-07_TB48-M742_E.pdf
- A.L. Glazov, O.S. Vasyutinskii, Tech. Phys. Lett., 40 (12), 1130 (2014). DOI: 10.1134/S1063785014120244
- A.L. Glazov, V.S. Kalinovskii, A.V. Nashchekin, K.L. Muratikov, J. Alloys Compd., 800, 23 (2019). DOI: 10.1016/j.jallcom.2019.06.054
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.