Assesment of nonlinear phonon drag contribution in the thermopower for a heated conductive nanoparticle on the surface of a semiconductor
Arkhipov A. V. 1, Gabdullin P. G. 1
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: aarkhipov@spbstu.ru, pavel-gabdullin@yandex.ru

PDF
We propose a simple model for estimating the nonlinear phonon drag contribution to thermopower generated by a heat flux propagating from a conductive nanoparticle into a semiconductor. The results of the study confirm that thermoelectric effect in nanostructured electron emitters can produce electric "patch field" patterns with magnitudes sufficient to significantly stimulate emission. The phenomenon predicted by the model can possibly be used to develop thermoelectric converters with unique parameters. Keywords: thermoelectric effect, phonon drag, field electron emission, nanostructures, thin films.
  1. N.V. Egorov, E.P. Sheshin, Field emission electronics (Springer, Berlin, 2017). DOI: 10.1007/978-3-319-56561-3
  2. A. Evtukh, H. Hartnagel, O. Yilmazoglu, H. Mimura, D. Pavlidis, Vacuum nanoelectronic devices: novel electron sources and applications (Wiley, N. J., 2015). DOI: 10.1002/9781119037989
  3. A.P. Voznyakovskii, G.N. Fursey, A.A. Voznyakovskii, M.A. Polyakov, A.Yu. Neverovskaya, I.I. Zakirov, Tech. Phys. Lett., 45 (5), 467 (2019). DOI: 10.1134/S1063785019050158
  4. M.V. Davidovich, R.K. Yafarov, Tech. Phys., 64 (8), 1210 (2019). DOI: 10.1134/S106378421908005X
  5. R. Smerdov, A. Mustafaev, J. Appl. Phys., 134, 114903 (2023). DOI: 10.1063/5.0169129
  6. E.D. Eidelman, A.V. Arkhipov, Phys. Usp., 63 (7), 648 (2020). DOI: 10.3367/UFNe.2019.06.038576
  7. A. Andronov, E. Budylina, P. Shkitun, P. Gabdullin, N. Gnuchev, O. Kvashenkina, A. Arkhipov, J. Vac. Sci. Technol. B, 36 (2), 02C108 (2018). DOI: 10.1116/1.5009906
  8. P. Gabdullin, A. Zhurkin, V. Osipov, N. Besedina, O. Kvashenkina, A. Arkhipov, Diam. Rel. Mater., 105, 107805 (2020). DOI: 10.1016/j.diamond.2020.107805
  9. I. Bizyaev, P. Gabdullin, M. Chumak, V. Babyuk, S. Davydov, V. Osipov, A. Kuznetsov, O. Kvashenkina, A. Arkhipov, Nanomaterials, 11 (12), 3350 (2021). DOI: 10.3390/nano11123350
  10. A.V. Arkhipov, E.D. Eidelman, A.M. Zhurkin, V.S. Osipov, P.G. Gabdullin, Fuller. Nanotub. Carbon Nanostruct., 28 (4), 286 (2020). DOI: 10.1080/1536383X.2019.1708727
  11. E.D. Eidelman, Tech. Phys., 64 (10), 1409 (2019). DOI: 10.1134/S1063784219100086
  12. A.S. Dmitriev, Vvedenie v nanoteplofiziku (BINOM. Laboratoriya Znanii, M., 2015) (in Russian)
  13. V.I. Khvesyuk, A.S. Skryabin, High Temp., 55 (3), 434 (2017). DOI: 10.1134/S0018151X17030129
  14. E.N. Bogachek, I.O. Kulik, A.N. Omel'yanchuk, A.G. Shkorbatov, JETP Lett., 41 (12), 633 (1985). http://jetpletters.ru/ps/1470/article_22421.shtml
  15. L. Weber, M. Lehr, E. Gmelin, Phys. Rev. B, 46 (15), 9511 (1992). DOI: 10.1103/physrevb.46.951
  16. A.I. Ansel'm. Vvedenie v teoriyu poluprovodnikov (Lan, SPb, 2008) (in Russian)
  17. G.D. Mahan, Phys. Rev. B, 43 (5), 3945 (1991). DOI: 10.1103/physrevb.43.3945
  18. A.N. Grigorenko, P.I. Nikitin, D.A. Jelski, T.F. George, Phys. Rev. B, 42 (12), 7405 (1990). DOI: 10.1103/physrevb.42.7405
  19. Y. Ezzahri, K. Joulain, J. Ordonez-Miranda, J. Appl. Phys., 128 (10), 105104 (2020). DOI: 10.1063/5.0017188
  20. P.C. Fletcher, B. Lee, W.P. King, Nanotechnology, 23 (3), 035401 (2011). DOI: 10.1088/0957-4484/23/3/035401

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru