Assesment of nonlinear phonon drag contribution in the thermopower for a heated conductive nanoparticle on the surface of a semiconductor
Arkhipov A. V.
1, Gabdullin P. G.
11Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: aarkhipov@spbstu.ru, pavel-gabdullin@yandex.ru
We propose a simple model for estimating the nonlinear phonon drag contribution to thermopower generated by a heat flux propagating from a conductive nanoparticle into a semiconductor. The results of the study confirm that thermoelectric effect in nanostructured electron emitters can produce electric "patch field" patterns with magnitudes sufficient to significantly stimulate emission. The phenomenon predicted by the model can possibly be used to develop thermoelectric converters with unique parameters. Keywords: thermoelectric effect, phonon drag, field electron emission, nanostructures, thin films.
- N.V. Egorov, E.P. Sheshin, Field emission electronics (Springer, Berlin, 2017). DOI: 10.1007/978-3-319-56561-3
- A. Evtukh, H. Hartnagel, O. Yilmazoglu, H. Mimura, D. Pavlidis, Vacuum nanoelectronic devices: novel electron sources and applications (Wiley, N. J., 2015). DOI: 10.1002/9781119037989
- A.P. Voznyakovskii, G.N. Fursey, A.A. Voznyakovskii, M.A. Polyakov, A.Yu. Neverovskaya, I.I. Zakirov, Tech. Phys. Lett., 45 (5), 467 (2019). DOI: 10.1134/S1063785019050158
- M.V. Davidovich, R.K. Yafarov, Tech. Phys., 64 (8), 1210 (2019). DOI: 10.1134/S106378421908005X
- R. Smerdov, A. Mustafaev, J. Appl. Phys., 134, 114903 (2023). DOI: 10.1063/5.0169129
- E.D. Eidelman, A.V. Arkhipov, Phys. Usp., 63 (7), 648 (2020). DOI: 10.3367/UFNe.2019.06.038576
- A. Andronov, E. Budylina, P. Shkitun, P. Gabdullin, N. Gnuchev, O. Kvashenkina, A. Arkhipov, J. Vac. Sci. Technol. B, 36 (2), 02C108 (2018). DOI: 10.1116/1.5009906
- P. Gabdullin, A. Zhurkin, V. Osipov, N. Besedina, O. Kvashenkina, A. Arkhipov, Diam. Rel. Mater., 105, 107805 (2020). DOI: 10.1016/j.diamond.2020.107805
- I. Bizyaev, P. Gabdullin, M. Chumak, V. Babyuk, S. Davydov, V. Osipov, A. Kuznetsov, O. Kvashenkina, A. Arkhipov, Nanomaterials, 11 (12), 3350 (2021). DOI: 10.3390/nano11123350
- A.V. Arkhipov, E.D. Eidelman, A.M. Zhurkin, V.S. Osipov, P.G. Gabdullin, Fuller. Nanotub. Carbon Nanostruct., 28 (4), 286 (2020). DOI: 10.1080/1536383X.2019.1708727
- E.D. Eidelman, Tech. Phys., 64 (10), 1409 (2019). DOI: 10.1134/S1063784219100086
- A.S. Dmitriev, Vvedenie v nanoteplofiziku (BINOM. Laboratoriya Znanii, M., 2015) (in Russian)
- V.I. Khvesyuk, A.S. Skryabin, High Temp., 55 (3), 434 (2017). DOI: 10.1134/S0018151X17030129
- E.N. Bogachek, I.O. Kulik, A.N. Omel'yanchuk, A.G. Shkorbatov, JETP Lett., 41 (12), 633 (1985). http://jetpletters.ru/ps/1470/article_22421.shtml
- L. Weber, M. Lehr, E. Gmelin, Phys. Rev. B, 46 (15), 9511 (1992). DOI: 10.1103/physrevb.46.951
- A.I. Ansel'm. Vvedenie v teoriyu poluprovodnikov (Lan, SPb, 2008) (in Russian)
- G.D. Mahan, Phys. Rev. B, 43 (5), 3945 (1991). DOI: 10.1103/physrevb.43.3945
- A.N. Grigorenko, P.I. Nikitin, D.A. Jelski, T.F. George, Phys. Rev. B, 42 (12), 7405 (1990). DOI: 10.1103/physrevb.42.7405
- Y. Ezzahri, K. Joulain, J. Ordonez-Miranda, J. Appl. Phys., 128 (10), 105104 (2020). DOI: 10.1063/5.0017188
- P.C. Fletcher, B. Lee, W.P. King, Nanotechnology, 23 (3), 035401 (2011). DOI: 10.1088/0957-4484/23/3/035401
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.