Thermal stability of thin-film periodic IZO structures with gradient modulation of oxygen content across the thickness
Akhmedov A. K.1, Asvarov A.Sh.1, Murliev E. K.1, Abduev A. Kh.2
1Amirkhanov Institute of Physics, Daghestan Federal Research Center, Russian Academy of Sciences, Makhachkala, Russia
2Federal State University of Education, Moscow, Russia
Email: cht-if-ran@mail.ru, abil-as@list.ru, a_abduev@mail.ru
By periodically varying the oxygen content in working gas during high-frequency magnetron sputtering of the target consisting of In2O3 with 10 wt.% ZnO(IZO), high conductivity thin-film transparent periodic structures with the gradient-modulated oxygen content across the thickness were fabricated. Thermal stability of electrical properties of the obtained structures was investigated through annealing them both in vacuum and in open air. It was found out that the structure resistance increases in both annealing scenarios. The study has demonstrated that during annealing in air the resistance increase is caused primarily by reduction in the free electron concentration. This reduction is attributed to neutralization of vacancy donor centers by atmospheric oxygen. In contrast, the resistance increase during vacuum annealing is caused mainly by a decrease in the electron mobility resulting from degradation of the modulated (gradient) structure of the film. Keywords: magnetron sputtering, indium oxide, zinc oxide, thin-film periodic structure, gradient modulation, electrical resistance.
- Y. Zhidik, A. Ivanova, S. Smirnov, K. Zhuk, I. Yunusov, P. Troyan, Coatings, 12 (12), 1868 (2022). DOI: 10.3390/coatings12121868
- H. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur, H. Morko c, Superlat. Microstruct., 48, 458 (2010). DOI: 10.1016/j.spmi.2010.08.011
- Y.S. Zhidik, P.E. Troyan, V.V. Kozik, S.A. Kozyukhin, A.V. Zabolotskaya, S.A. Kuznetsova, Russ. Phys. J., 63 (7), 1139 (2020). DOI: 10.1007/s11182-020-02167-4
- D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett., 82, 2552 (1999). DOI: 10.1103/PhysRevLett.82.2552
- A. Zunger, Appl. Phys. Lett., 83, 57 (2003). DOI: 10.1063/1.1584074
- R.J. Hamers, Nature, 412, 489 (2001). DOI: 10.1038/35087682
- Y. Liu, M. Pharr, G.A. Salvatore, ACS Nano, 11, 9614 (2017). DOI: 10.1021/acsnano.7b04898
- P. Zhao, S. Kim, S. Yoon, P. Song, Thin Solid Films, 665, 137 (2018). DOI: 10.1016/j.tsf.2018.09.018
- A.K. Akhmedov, A.Kh. Abduev, V.M. Kanevsky, A.E. Muslimov, A.Sh. Asvarov, Coating, 10 (3), 269 (2020). DOI: 10.3390/coatings10030269
- H. Hara, T. Hanada, T. Shiro, T. Yatabe, J. Vac. Sci. Technol. A, 22 (4), 1726 (2004). DOI: 10.1116/1.1692270
- S. Li, Z. Shi, Z. Tang, X. Li, Vacuum, 145, 262 (2017). DOI: 10.1016/j.vacuum.2017.09.011
- H. Hosono, J. Non-Cryst. Solids, 352, 851 (2006). DOI: 10.1016/j.jnoncrysol.2006.01.073
- A.K. Akhmedov, E.K. Murliev, A.Sh. Asvarov, A.E. Muslimov, V.M. Kanevsky, Coating, 12 (10), 1583 (2022). DOI: 10.3390/coatings12101583
- J.J. Robbins, C.A. Wolden, Appl. Phys. Lett., 83 (19), 3933 (2003). DOI: 10.1063/1.1625435
- A.K. Akhmedov, A.K. Abduev, E.K. Murliev, V.V. Belyaev, A.S. Asvarov, Materials, 16, 3740 (2023). DOI: 10.3390/ma16103740
- A.Sh. Asvarov, A.K. Akhmedov, A.E. Muslimov, V.M. Kanevsky, Tech. Phys. Lett., 48 (1), 91 (2022). DOI: 10.21883/TPL.2022.01.52481.19001
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.