Study of stability of heavily boron doped nanodiamond dispersions
Kondrina K. M.1,2, Urodkova E. K.3, Senchikhin I. N.3, Lyapin S. G.1, Grigoriev Y. V.4, Ekimov E. A.1
1Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
3Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
4Shubnikov Kurchatov Institute of Crystallography of the Kurchatov Institute of Crystallography and Photonics, Moscow, Russian Federation
Email: kondrina.km@phystech.edu

PDF
Comparative study of water dispersions of boron-doped and detonation nanodiamonds uniformly purified from non-diamond phases in acids reveals high resistance of boron-doped particles to agglomeration and precipitation and its absence in case of detonation nanodiamonds. Boron doped nanodiamonds were obtained by pyrolysis of 9-borabicyclo[3.3.1]nonane dimer C16H30B2 at pressure 8-9 GPa and temperature 1250 oC-1300 oC. The concentration of boron in the synthesized nanodiamonds was estimated using Raman spectroscopy to be at a level of 1021 cm-3 which corresponds to a heavily doped state. FTIR absorption analysis exposes additional lines in doped diamond spectra characteristic to B-O-groups. The presence of boron on the nanoparticle surface is thought to be responsible for the high stability of the suspension after the acid purification process without the need for additional functionalization. Improved stability of boron-doped nanodiamond in aqueous solutions with a pH of 2.5-82.5 8 can be a crucial factor for its effective application in electrochemical and biomedical technologies, for seeding of crystallization centers to obtain conducting CVD diamond films without disturbing electrical contact with substrate, and for inkjet printing of patterned boron-doped diamond electrodes. Keywords: Detonation nanodiamond, High pressures, Oxygen, FTIR, DLS, Electrokinetic potential.
  1. K. Muzyka, J. Sun, T.H. Fereja, Y. Lan, W. Zhang, G. Xu. Anal. Methods, 11 (4), 397 (2019). DOI: 10.1039/C8AY02197J
  2. Z. Liu, S. Baluchova, B. Brocken, E. Ahmed, P. Pobedinskas, K. Haenen, J.G. Buijnsters. ACS Appl. Mater. Interfaces, 15 (33), 39915 (2023). DOI: 10.1021/acsami.3c04824
  3. J.X. Qin, X.G. Yang, C.F. Lv, Y.Z. Li, K.K. Liu, J.H. Zang, X. Yang, L. Dong, C.X. Shan. Mater. Des., 210, 110091 (2021). DOI: 10.1016/j.matdes.2021.110091
  4. A.M. Vervald, S.A. Burikov, A.M. Scherbakov, O.S. Kudryavtsev, N.A. Kalyagina, I.I. Vlasov, E.A. Ekimov, T.A. Dolenko. ACS Biomater. Sci. Eng., 6 (8), 4446 (2020). DOI: 10.1021/acsbiomaterials.0c00505
  5. S. Heyer, W. Janssen, S. Turner, Y.G. Lu, W.S. Yeap, J. Verbeeck, K. Haenen, A. Krueger. ACS Nano, 8 (6), 5757 (2014). DOI: 10.1021/nn500573x
  6. T. Kondo, T. Kato, K. Miyashita, T. Aikawa, T. Tojo, M. Yuasa. J. Electrochem. Soc., 166 (8), A1425, (2019). DOI: 10.1149/2.0381908jes
  7. T. Kondo. Chem. Lett., 50 (4), 733 (2021). DOI: 10.1016/j.coelec.2021.100891
  8. N. Gibson, O. Shenderova, T.J.M. Luo, S. Moseenkov, V. Bondar, A. Puzyr, K. Purtov, Z. Fitzgerald, D.W. Brenner. Diamond Relat. Mater., 18 (4), 620 (2009). DOI: 10.1016/j.diamond.2008.10.049
  9. C. Bradac, I.D. Rastogi, N.M. Cordina, A. Garcia-Bennett, L. Brown. J. Diamond Relat. Mater., 83, 38 (2018). DOI: 10.1016/j.diamond.2018.01.022
  10. A.T. Dideikin, A.E. Aleksenskii, M.V. Baidakova, P.N. Brunkov, M. Brzhezinskaya, V.Y. Davydov, V.S. Levitskii, S.V. Kidalov, Yu.A. Kukushkina, D.A. Kirilenko, V.V. Shnitov, A.V. Shvidchenko, B.V. Senkovskiy, M.S. Shestakov, A.Y. Vul. Carbon, 122, 737 (2017). DOI: 10.1016/j.carbon.2017.07.013
  11. E.A. Ekimov, O.S. Kudryavtsev, S. Turner, S. Korneychuk, V.P. Sirotinkin, T.A. Dolenko, A.M. Vervald, I.I. Vlasov. Phys. Status Solidi (A), 213 (10), 2582 (2016). DOI: 10.1002/pssa.201600181
  12. S. Stehlik, T. Glatzel, V. Pichot, R. Pawlak, E. Meyer, D. Spitzer, B. Rezek. Diamond Relat. Mater., 63, 97 (2016). DOI: 10.1016/j.diamond.2015.08.016
  13. O. Shenderova, A.M. Panich, S. Moseenkov, S.C. Hens, V. Kuznetsov, H.M. Vieth. J. Phys. Chem. C, 115 (39), 19005 (2011). DOI: 10.1021/jp205389m
  14. D. Miliaieva, A.S. Djoumessi, J. v Cermak, K. Kolav rova, M. Schaal, F. Otto, E. Shagieva, O. Romanyuk, J. Jiv ri Pangrac, J. Kulv cek, V. Nadav zdy, S. Stehlik, A. Kromka, H. Hoppe, B. Rezek. Nanoscale Adv., 5 (17), 4402 (2023). DOI: 10.1039/D3NA00205E
  15. Y. Andriani, J. Song, P.C. Lim, D.H.L. Seng, D.M.Y. Lai, S.L. Teo, J. Kong, X. Wang, X. Zhang, S. Liu. Ceram. Int., 45 (4), 4909 (2019). DOI: 10.1016/j.ceramint.2018.11.190
  16. M.N. Mirzayev. Int. J. Mod. Phys. B, 34 (18), 2050160 (2020). DOI: 10.1142/S021797922050160X
  17. E. Ekimov, A.A. Shiryaev, Y. Grigoriev, A. Averin, E. Shagieva, S. Stehlik, M. Kondrin. Nanomater., 12 (3), 351 (2022). DOI: 10.3390/nano12030351
  18. J.W. Ager III, W. Walukiewicz, M. McCluskey, M.A. Plano, M.I. Landstrass. Appl. Phys. Lett., 66 (5), 616 (1995). DOI: 10.1063/1.114031
  19. F. Pruvost, E. Bustarret, A. Deneuville. Diamond Relat. Mater., 9 (3-6), 295 (2000). DOI: 10.1016/S0925-9635(99)00241-1
  20. V. Mortet, A. Taylor, Z.V. v Zivcova, D. Machon, O. Frank, P. Hubik, D. Tremouilles, L. Kavan. Diamond Relat. Mater., 88, 163 (2018). DOI: 10.1016/j.diamond.2018.07.013
  21. E.A. Ekimov, S.G. Lyapin, Y.V. Grigoriev, I.P. Zibrov, K.M. Kondrina. Carbon, 150, 436 (2019). DOI: 10.1016/j.carbon.2019.05.047
  22. V. Mortet, Z.V. v Zivcova, A. Taylor, M. Davydova, O. Frank, P. Hubik, J. Lorincik, M. Aleshin. Diamond Relat. Mater., 93, 54 (2019). DOI: 10.1016/j.diamond.2019.01.028
  23. Raman Analysis Tool. https://ramantool.pythonanywhere.com/
  24. T.M. Riddick. Zeta-Meter Operating Manual zm-75 (Zeta-Meter, Inc., NY., 1968)
  25. J.D. Clogston, A.K. Patri. Zeta Potential Measurement. In: Characterization of Nanoparticles Intended for Drug Delivery. Methods in Molecular Biology, ed. by E. Scott, McNeil (New Jersey, Humana Press, 2011), v. 697, p. 63-70. DOI: 10.1007/978-1-60327-198-1_6
  26. S. Stehlik, M. Varga, M. Ledinsky, V. Jirasek, A. Artemenko, H. Kozak, L. Ondic, V. Skakalova, G. Argentero, T. Pennycook, J.C. Meyer, A. Fejfar, A. Kromka, B. Rezek. J. Phys. Chem. C, 119 (49), 27708 (2015). DOI: 10.1021/acs.jpcc.5b05259
  27. S. Stehlik, M. Varga, M. Ledinsky, D. Miliaieva, H. Kozak, V. Skakalova, C. Mangler, T.J. Pennycook, J.C. Meyer, A. Kromka, B. Rezek. Sci. Rep., 6 (1), 38419 (2016). DOI: 10.1038/srep38419
  28. A.P. Koshcheev. Russ. J. General Chem., 79 (9), 2033 (2009). DOI: 10.1134/S1070363209090357
  29. T. Petit, H.A. Girard, A. Trouve, I. Batonneau-Gener, P. Bergonzo, J.C. Arnault. Nanoscale, 5 (19), 8958 (2013). DOI: 10.1039/C3NR02492J
  30. A.S. Barnard, M. Sternberg. Diamond Relat. Mater., 16 (12), 2078 (2007). DOI: 10.1016/j.diamond.2007.05.011
  31. A.S. Barnard, M. Sternberg. J. Phys. Chem. B, 110 (39), 19307 (2006). DOI: 10.1021/jp0634252
  32. C.A. Latorre, J.P. Ewen, D. Dini, M.C. Righi. Carbon, 171, 575 (2021). DOI: 10.1016/j.carbon.2020.09.044
  33. M. Sasaki, S. Kano, H. Sugimoto, K. Imakita, M. Fujii. J. Phys. Chem. C, 120 (1), 195 (2016). DOI: 10.1021/acs.jpcc.5b05604
  34. J. Shirafuji, T. Sugino. Diamond Relat. Mater., 5 (6-8), 706 (1996). DOI: 10.1016/0925-9635(95)00415-7
  35. Z. Futera, T. Watanabe, Y. Einaga, Y. Tateyama. J. Phys. Chem. C, 118 (38), 22040 (2014). DOI: 10.1021/jp506046m

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru