Kondrina K. M.1,2, Urodkova E. K.3, Senchikhin I. N.3, Lyapin S. G.1, Grigoriev Y. V.4, Ekimov E. A.1
1Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
3Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
4Shubnikov Kurchatov Institute of Crystallography of the Kurchatov Institute of Crystallography and Photonics, Moscow, Russian Federation
Email: kondrina.km@phystech.edu
Comparative study of water dispersions of boron-doped and detonation nanodiamonds uniformly purified from non-diamond phases in acids reveals high resistance of boron-doped particles to agglomeration and precipitation and its absence in case of detonation nanodiamonds. Boron doped nanodiamonds were obtained by pyrolysis of 9-borabicyclo[3.3.1]nonane dimer C16H30B2 at pressure 8-9 GPa and temperature 1250 oC-1300 oC. The concentration of boron in the synthesized nanodiamonds was estimated using Raman spectroscopy to be at a level of 1021 cm-3 which corresponds to a heavily doped state. FTIR absorption analysis exposes additional lines in doped diamond spectra characteristic to B-O-groups. The presence of boron on the nanoparticle surface is thought to be responsible for the high stability of the suspension after the acid purification process without the need for additional functionalization. Improved stability of boron-doped nanodiamond in aqueous solutions with a pH of 2.5-82.5 8 can be a crucial factor for its effective application in electrochemical and biomedical technologies, for seeding of crystallization centers to obtain conducting CVD diamond films without disturbing electrical contact with substrate, and for inkjet printing of patterned boron-doped diamond electrodes. Keywords: Detonation nanodiamond, High pressures, Oxygen, FTIR, DLS, Electrokinetic potential.
- K. Muzyka, J. Sun, T.H. Fereja, Y. Lan, W. Zhang, G. Xu. Anal. Methods, 11 (4), 397 (2019). DOI: 10.1039/C8AY02197J
- Z. Liu, S. Baluchova, B. Brocken, E. Ahmed, P. Pobedinskas, K. Haenen, J.G. Buijnsters. ACS Appl. Mater. Interfaces, 15 (33), 39915 (2023). DOI: 10.1021/acsami.3c04824
- J.X. Qin, X.G. Yang, C.F. Lv, Y.Z. Li, K.K. Liu, J.H. Zang, X. Yang, L. Dong, C.X. Shan. Mater. Des., 210, 110091 (2021). DOI: 10.1016/j.matdes.2021.110091
- A.M. Vervald, S.A. Burikov, A.M. Scherbakov, O.S. Kudryavtsev, N.A. Kalyagina, I.I. Vlasov, E.A. Ekimov, T.A. Dolenko. ACS Biomater. Sci. Eng., 6 (8), 4446 (2020). DOI: 10.1021/acsbiomaterials.0c00505
- S. Heyer, W. Janssen, S. Turner, Y.G. Lu, W.S. Yeap, J. Verbeeck, K. Haenen, A. Krueger. ACS Nano, 8 (6), 5757 (2014). DOI: 10.1021/nn500573x
- T. Kondo, T. Kato, K. Miyashita, T. Aikawa, T. Tojo, M. Yuasa. J. Electrochem. Soc., 166 (8), A1425, (2019). DOI: 10.1149/2.0381908jes
- T. Kondo. Chem. Lett., 50 (4), 733 (2021). DOI: 10.1016/j.coelec.2021.100891
- N. Gibson, O. Shenderova, T.J.M. Luo, S. Moseenkov, V. Bondar, A. Puzyr, K. Purtov, Z. Fitzgerald, D.W. Brenner. Diamond Relat. Mater., 18 (4), 620 (2009). DOI: 10.1016/j.diamond.2008.10.049
- C. Bradac, I.D. Rastogi, N.M. Cordina, A. Garcia-Bennett, L. Brown. J. Diamond Relat. Mater., 83, 38 (2018). DOI: 10.1016/j.diamond.2018.01.022
- A.T. Dideikin, A.E. Aleksenskii, M.V. Baidakova, P.N. Brunkov, M. Brzhezinskaya, V.Y. Davydov, V.S. Levitskii, S.V. Kidalov, Yu.A. Kukushkina, D.A. Kirilenko, V.V. Shnitov, A.V. Shvidchenko, B.V. Senkovskiy, M.S. Shestakov, A.Y. Vul. Carbon, 122, 737 (2017). DOI: 10.1016/j.carbon.2017.07.013
- E.A. Ekimov, O.S. Kudryavtsev, S. Turner, S. Korneychuk, V.P. Sirotinkin, T.A. Dolenko, A.M. Vervald, I.I. Vlasov. Phys. Status Solidi (A), 213 (10), 2582 (2016). DOI: 10.1002/pssa.201600181
- S. Stehlik, T. Glatzel, V. Pichot, R. Pawlak, E. Meyer, D. Spitzer, B. Rezek. Diamond Relat. Mater., 63, 97 (2016). DOI: 10.1016/j.diamond.2015.08.016
- O. Shenderova, A.M. Panich, S. Moseenkov, S.C. Hens, V. Kuznetsov, H.M. Vieth. J. Phys. Chem. C, 115 (39), 19005 (2011). DOI: 10.1021/jp205389m
- D. Miliaieva, A.S. Djoumessi, J. v Cermak, K. Kolav rova, M. Schaal, F. Otto, E. Shagieva, O. Romanyuk, J. Jiv ri Pangrac, J. Kulv cek, V. Nadav zdy, S. Stehlik, A. Kromka, H. Hoppe, B. Rezek. Nanoscale Adv., 5 (17), 4402 (2023). DOI: 10.1039/D3NA00205E
- Y. Andriani, J. Song, P.C. Lim, D.H.L. Seng, D.M.Y. Lai, S.L. Teo, J. Kong, X. Wang, X. Zhang, S. Liu. Ceram. Int., 45 (4), 4909 (2019). DOI: 10.1016/j.ceramint.2018.11.190
- M.N. Mirzayev. Int. J. Mod. Phys. B, 34 (18), 2050160 (2020). DOI: 10.1142/S021797922050160X
- E. Ekimov, A.A. Shiryaev, Y. Grigoriev, A. Averin, E. Shagieva, S. Stehlik, M. Kondrin. Nanomater., 12 (3), 351 (2022). DOI: 10.3390/nano12030351
- J.W. Ager III, W. Walukiewicz, M. McCluskey, M.A. Plano, M.I. Landstrass. Appl. Phys. Lett., 66 (5), 616 (1995). DOI: 10.1063/1.114031
- F. Pruvost, E. Bustarret, A. Deneuville. Diamond Relat. Mater., 9 (3-6), 295 (2000). DOI: 10.1016/S0925-9635(99)00241-1
- V. Mortet, A. Taylor, Z.V. v Zivcova, D. Machon, O. Frank, P. Hubik, D. Tremouilles, L. Kavan. Diamond Relat. Mater., 88, 163 (2018). DOI: 10.1016/j.diamond.2018.07.013
- E.A. Ekimov, S.G. Lyapin, Y.V. Grigoriev, I.P. Zibrov, K.M. Kondrina. Carbon, 150, 436 (2019). DOI: 10.1016/j.carbon.2019.05.047
- V. Mortet, Z.V. v Zivcova, A. Taylor, M. Davydova, O. Frank, P. Hubik, J. Lorincik, M. Aleshin. Diamond Relat. Mater., 93, 54 (2019). DOI: 10.1016/j.diamond.2019.01.028
- Raman Analysis Tool. https://ramantool.pythonanywhere.com/
- T.M. Riddick. Zeta-Meter Operating Manual zm-75 (Zeta-Meter, Inc., NY., 1968)
- J.D. Clogston, A.K. Patri. Zeta Potential Measurement. In: Characterization of Nanoparticles Intended for Drug Delivery. Methods in Molecular Biology, ed. by E. Scott, McNeil (New Jersey, Humana Press, 2011), v. 697, p. 63-70. DOI: 10.1007/978-1-60327-198-1_6
- S. Stehlik, M. Varga, M. Ledinsky, V. Jirasek, A. Artemenko, H. Kozak, L. Ondic, V. Skakalova, G. Argentero, T. Pennycook, J.C. Meyer, A. Fejfar, A. Kromka, B. Rezek. J. Phys. Chem. C, 119 (49), 27708 (2015). DOI: 10.1021/acs.jpcc.5b05259
- S. Stehlik, M. Varga, M. Ledinsky, D. Miliaieva, H. Kozak, V. Skakalova, C. Mangler, T.J. Pennycook, J.C. Meyer, A. Kromka, B. Rezek. Sci. Rep., 6 (1), 38419 (2016). DOI: 10.1038/srep38419
- A.P. Koshcheev. Russ. J. General Chem., 79 (9), 2033 (2009). DOI: 10.1134/S1070363209090357
- T. Petit, H.A. Girard, A. Trouve, I. Batonneau-Gener, P. Bergonzo, J.C. Arnault. Nanoscale, 5 (19), 8958 (2013). DOI: 10.1039/C3NR02492J
- A.S. Barnard, M. Sternberg. Diamond Relat. Mater., 16 (12), 2078 (2007). DOI: 10.1016/j.diamond.2007.05.011
- A.S. Barnard, M. Sternberg. J. Phys. Chem. B, 110 (39), 19307 (2006). DOI: 10.1021/jp0634252
- C.A. Latorre, J.P. Ewen, D. Dini, M.C. Righi. Carbon, 171, 575 (2021). DOI: 10.1016/j.carbon.2020.09.044
- M. Sasaki, S. Kano, H. Sugimoto, K. Imakita, M. Fujii. J. Phys. Chem. C, 120 (1), 195 (2016). DOI: 10.1021/acs.jpcc.5b05604
- J. Shirafuji, T. Sugino. Diamond Relat. Mater., 5 (6-8), 706 (1996). DOI: 10.1016/0925-9635(95)00415-7
- Z. Futera, T. Watanabe, Y. Einaga, Y. Tateyama. J. Phys. Chem. C, 118 (38), 22040 (2014). DOI: 10.1021/jp506046m
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.