Исследование люминесцентных свойств фторидного стекла ZBLAN:Er3+/Ho3+ при лазерном возбуждении на длине волны 1.94 μm
Министерство науки и высшего образования Российской Федерации, Наука и университеты, FSWR-2024-0004
Еголин В.А.
1, Савикин А.П.
1, Курашкин С.В.
1, Маругин А.В.
11Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия

Email: vitaly.egolin@mail.ru, savikin@rf.unn.ru, kurashkin@rf.unn.ru, marugin@rf.unn.ru
Поступила в редакцию: 8 июля 2024 г.
В окончательной редакции: 7 мая 2025 г.
Принята к печати: 2 июня 2025 г.
Выставление онлайн: 18 июля 2025 г.
Синтезирована серия образцов фторидного стекла состава ZBLAN:1%Er3+, ZBLAN:1%Ho3+, ZBLAN:1%Er3++X%Ho3+ (X=0.25,0.5,1 mol.%). На основе спектров пропускания соединений ZBLAN:1%Ho3+ и ZBLAN:1%Er3+ определены параметры интенсивности Джадда-Офельта для ионов Ho3+ и Er3+ в синтезированных образцах. Проведены исследования ап-конверсионной люминесценции стекла ZBLAN:Er3+/Ho3+ при возбуждении излучением Tm3+:YAP-лазера с длиной волны 1.94 μm. В спектрах ап-конверсионной люминесценции в видимом диапазоне наблюдались полосы в областях 545 и 655 nm. Наибольшую интенсивность имели красные линии на длине волны 655 nm, соответствующие переходам 4F9/2->4I15/2 ионов Er3+ и 5F5->5I8 ионов Ho3+. Величина пороговой плотности мощности визуализации излучения Tm3+:YAP-лазера снижалась при увеличении концентрации ионов Ho3+ и в образце ZBLAN:1%Er3++1%Ho3+ составила 30 W/cm2. Ключевые слова: теория Джадда-Офельта, ап-конверсионная люминесценция, визуализация ИК излучения, фторидное стекло, редкоземельные элементы.
- F. Auzel, D. Pecile, D. Morin. J. Electrochem. Soc., 122 (1), 101 (1975). DOI: 10.1149/1.2134132
- А.П. Савикин, А.В. Будруев, А.Н. Шушунов, Е.Л. Тихонова, К.В. Шастин, И.А. Гришин. Неорган. материалы, 50 (11), 1261 (2014). DOI: 10.7868/S0002337X14110153 [A.P. Savikin, A.V. Budruev, A.N. Shushunov, E.L. Tikhonova, K.V. Shastin, I.A. Grishin. Inorg. Mater., 50 (11), 1169 (2014). DOI: 10.1134/S0020168514110156]
- А.П. Савикин, А.С. Егоров, А.В. Будруев, И.А. Гришин. Опт. и спектр., 120 (6), 963 (2016). DOI: 10.7868/S0030403416060192 [A.P. Savikin, A.S. Egorov, A.V. Budruev, I.A. Grishin. Opt. Spectrosc., 120 (6), 902 (2016). DOI: 10.1134/S0030400X16060199]
- F. Auzel. Proc. IEEE, 61 (6), 758 (1973). DOI: 10.1109/PROC.1973.9155
- А.К. Казарян, Ю.П. Тимофеев, М.В. Фок. В сб.: Центры свечения редкоземельных ионов в кристаллофосфорах, под ред. Н.Г. Басова. Труды ФИАН (Наука, М., 1986), т. 175, с. 4
- M. Tsuda, K. Soga, H. Inoue, S. Inoue, A. Makishima. J. Appl. Phys., 85 (1), 29 (1999). DOI: 10.1063/1.369445
- T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, B.H.T. Chai. J. Appl. Phys., 76 (3), 1413 (1994). DOI: 10.1063/1.357745
- J. Zhao, L. Wu, C. Zhang, B. Zeng, Y. Lv, Z. Li, Q. Jiang, Z. Guo. J. Mater. Chem. C, 5 (16), 3903 (2017). DOI: 10.1039/C7TC00757D
- А.А. Ляпин, П.А. Рябочкина, С.Н. Ушаков, П.П. Федоров. Квант. электрон., 44 (6), 602 (2014). [A.A. Lyapin, P.A. Ryabochkina, S.N. Ushakov, P.P. Fedorov. Quantum Electron., 44 (6), 602 (2014). DOI: 10.1070/QE2014v044n06ABEH015423]
- А.П. Савикин, А.С. Егоров, А.В. Будруев, И.Ю. Перунин, И.А. Гришин. Письма в ЖТФ, 42 (21), 47 (2016). DOI: 10.21883/pjtf.2016.21.43840.16262 [A.P. Savikin, A.S. Egorov, A.V. Budruev, I.Yu. Perunin, I.A. Grishin. Tech. Phys. Lett., 42 (11), 1083 (2016). DOI: 10.1134/S1063785016110079]
- P.P. Fedorov, A.A. Luginina, S.V. Kuznetsov, V.V. Voronov, A.A. Lyapin, A.S. Ermakov, D.V. Pominova, A.D. Yapryntsev, V.K. Ivanov, A.A. Pynenkov, K.N. Nishchev. Cellulose, 26 (4), 2403 (2019). DOI: 10.1007/s10570-018-2194-4
- А.А. Ляпин, П.А. Рябочкина, С.Н. Ушаков, В.В. Осико, П.П. Федоров, А.А. Демиденко, Е.А. Гарибин. Способ визуализации двухмикронного лазерного излучения в видимый свет. Патент RU 2549561 C1, 27.04.2015
- I. Kaplan, D. Aravot, S. Giler, Y. Gat, D. Sagie, Y. Kagan. In: LASER Optoelectronics in Medicine, ed. by W. Waidelich, R. Waidelich. (Springer, Heidelberg, 1988), p. 23. DOI: 10.1007/978-3-642-72870-9_6
- S. Wenk, S. Furst, V. Danicke, D.T. Kunde. In: Advances in Medical Engineering, ed. by T.M. Buzug, D. Holz, J. Bongartz, M. Kohl-Bareis, U. Hartmann, S. Weber. Springer Proceedings in Physics (Springer, Heidelberg, 2007), vol. 114, p. 447. DOI: 10.1007/978-3-540-68764-1_75
- B.M. Walsh. Laser Phys., 19 (4), 855 (2009). DOI: 10.1134/S1054660X09040446
- K. Lemanski, R. Pazik, P.J. Deren. Opt. Mater., 34 (12), 1990 (2012). DOI: 10.1016/j.optmat.2011.12.021
- W. Xu, X. Gao, L. Zheng, Z. Zhang, W. Cao. Opt. Express, 20 (16), 18127 (2012). DOI: 10.1364/OE.20.018127
- I.A. Grishin, V.A. Guryev, A.P. Savikin, N.B. Zvonkov. Opt. Fiber. Tech., 1 (4), 331 (1995). DOI: 10.1006/ofte.1995.1027
- K. Anders, A. Jusza, P. Komorowski, P. Andrejuk, R. Piramidowicz. J. Lumin., 201, 427 (2018). DOI: 10.1016/j.jlumin.2018.04.056
- D.Y. Wang, P.C. Ma, J.C. Zhang, Y.H. Wang. ACS Appl. Energy Mater., 1 (2), 447 (2018). DOI: 10.1021/acsaem.7b00093
- A.P. Savikin, K.E. Sumachev, I.A. Grishin, V.V. Sharkov. J. Non-Cryst. Solids, 572, 121087 (2021). DOI: 10.1016/j.jnoncrysol.2021.121087
- А.П. Савикин, И.Ю. Перунин, С.В. Курашкин, А.В. Будруев, И.А. Гришин. Опт. и спектр., 124 (3), 312 (2018). DOI: 10.21883/OS.2018.03.45650.229-17 [A.P. Savikin, I.Yu. Perunin, S.V. Kurashkin, A.V. Budruev, I.A. Grishin. Opt. Spectrosc., 124 (3), 307 (2018). DOI: 10.1134/S0030400X18030190]
- T. Miyakawa, D.L. Dexter. Phys. Rev. B, 1 (7), 2961 (1970). DOI: 10.1103/PhysRevB.1.2961
- F. Auzel. Phys. Rev. B, 13 (7), 2809 (1976). DOI: 10.1103/PhysRevB.13.2809
- B.M. Walsh. In: Advances in Spectroscopy for Lasers and Sensing, ed. by B. Bartolo, O. Forte. NATO Science Series II: Mathematics, Physics and Chemistry (Springer, Dordrecht, 2006), vol. 231, p. 403. DOI: 10.1007/1-4020-4789-4_21
- B.R. Judd. Phys. Rev., 127 (3), 750 (1962). DOI: 10.1103/PhysRev.127.750
- G.S. Ofelt. J. Chem. Phys., 37 (3), 511 (1962). DOI: 10.1063/1.1701366
- W.T. Carnall, H. Crosswhite, H.M. Crosswhite. Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3 (Argonne National Laboratory, Lemont, 1978). DOI: 10.2172/6417825
- W.T. Carnall, P.R. Fields, K. Rajnak. J. Chem. Phys., 49 (10), 4424 (1968). DOI: 10.1063/1.1669893
- D. Piatkowski, K. Wisniewski, M. Rozanski, Cz. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, M. Malinowski. J. Phys.: Condens. Matter, 20 (15), 155201 (2008). DOI: 10.1088/0953-8984/20/15/155201
- D. Piatkowski, K. Wisniewski, M. Rozanski, Cz. Koepke. Phys. Procedia, 2 (2), 365 (2009). DOI: 10.1016/j.phpro.2009.07.021
- А.П. Савикин, А.С. Егоров, А.В. Будруев, И.Ю. Перунин, И.А. Гришин. Физика и химия стекла, 42 (5), 627 (2016). [A.P. Savikin, A.S. Egorov, A.V. Budruev, I.A. Grishin. Glass Physics and Chemistry, 42 (5), 473 (2016). DOI: 10.1134/S108765961605014X]
- R. Lisiecki, E. Czerska, M. Zelechower, R. Swadzba, W. Ryba-Romanowski. Mater. Des., 126, 174 (2017). DOI: 10.1016/j.matdes.2017.04.046
- G. Arzumanyan, V. Vartic, A. Kuklin, D. Soloviov, G. Rachkovskaya, G. Zacharevich, E. Trusova, N. Skoptsov, K. Yumashev. J. Phys. Sci. Appl., 4 (3), 150 (2014)
- L. Qin, Z.X. Shen, B.L. Low, H.K. Lee, T.J. Lu, Y.S. Dai, S.H. Tang, M.H. Kuok. J. Raman Spectrosc., 28 (7), 495 (1997). DOI: 10.1002/(SICI)1097-4555(199707)28:7<495::AID-JRS116>3.0.CO;2-X
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.