Increased specific resistivity of grain boundaries in nonequilibrium state in ultrafine-grained Al-Cu-Zr alloy
Mavlyutov A. M. 1, Orlova T. S. 1
1Ioffe Institute, St. Petersburg, Russia
Email: a.m.mavlyutov@gmail.com, orlova.t@mail.ioffe.ru

PDF
In this work an Al-Cu-Zr alloy with ultrafine-grained (UFG) structure formed by high-pressure torsion is studied. Different structural states of grain boundaries in the UFG structure were achieved through subsequent annealing and additional deformation. The specific resistivity of the alloy in the temperature range 77-300 K has been experimentally determined for each state. Based on the microstructural parameters of the alloy, analysis of changes in average specific resistivity of grain boundaries was carried out. It is shown that additional deformation, which introduces excess grain boundary dislocation density (nonequilibrium state), leads to its increase by ≥ 20 %. Keywords: grain boundary resistivity, nonequilibrium grain boundaries, severe plastic deformation, microstructure.
  1. P.L. Rositter, The electrical resistivity of metals and alloys (Cambridge University Press, Cambridge, 2003)
  2. I. Nakamichi, J. Sci. Hiroshima Univ., 54 (1), 49 (1990)
  3. M.Y. Murashkin, N.A. Enikeev, X. Sauvage, Mater. Trans., 64 (8), 833 (2023). DOI: 10.2320/matertrans.MT-MF2022048
  4. D. Josell, S.H. Brongersma, Z. Tokei, Annu. Rev. Mater. Res., 39, 231 (2009). DOI: 10.1146/annurev-matsci-082908-14541
  5. X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Mater. Sci. Eng. A, 540, 1 (2012). DOI: 10.1016/j.msea.2012.01.080
  6. A.A. Nazarov, Lett. Mater., 8 (3), 372 (2018). DOI: 10.22226/2410-3535-2018-3-372-381
  7. H. Zhao, B. Gault, F. De Geuser, D. Ponge, D. Raabe, MATEC Web of Conf., 326, 01004 (2020). DOI: 10.1051/matecconf/202032601004
  8. T. Masuda, X. Sauvage, S. Hirosawa, Z. Horita, Mater. Sci. Eng. A, 793, 139668 (2020). DOI: 10.1016/j.msea.2020.139668
  9. I. Bakonyi, V.A. Isnaini, T. Kolonits, Zs. Czigany, J. Gubicza, L.K. Varga, E. Toth-Kadar, L. Pogany, L. Peter, H. Ebert, Phil. Mag., 99 (9), 1139 (2019). DOI: 10.1080/14786435.2019.1580399
  10. H. Bishara, S. Lee, T. Brink, M. Ghidelli, G. Dehm, ACS Nano, 15 (10), 16607 (2021). DOI: 10.1021/acsnano.1c06367
  11. J.L. McCrea, K.T. Aust, G. Palumbo, U. Erb, MRS Online Proc. Lib. Arch., 581, 461 (1999). DOI: 10.1557/PROC-581-461
  12. G. Kim, X. Chai, L. Yu, X. Cheng, D.S. Gianola, Scripta Mater., 123, 113 (2016). DOI: 10.1016/j.scriptamat.2016.06.008
  13. Y. Miyajima, S.Y. Komatsu, M. Mitsuhara, S. Hata, H. Nakashima, N. Tsuji, Phil. Mag., 90 (34), 4475 (2010). DOI: 10.1080/14786435.2010.510453
  14. M. Mito, H. Matsui, T. Yoshida, T. Anami, K. Tsuruta, H. Deguchi, T. Iwamoto, D. Terada, Y. Miyajima, N. Tsuji, Rev. Sci. Instrum., 87 (5), 053905 (2016). DOI: 10.1063/1.4950868
  15. T.S. Orlova, A.M. Mavlyutov, A.S. Bondarenko, I.A. Kasatkin, M.Y. Murashkin, R.Z. Valiev, Phil. Mag., 96 (23), 2429 (2016). DOI: 10.1080/14786435.2016.1204022
  16. X. Sauvage, F. Cuvilly, A. Russell, K. Edalati, Mater. Sci. Eng. A, 798, 140108 (2020). DOI: 10.1016/j.msea.2020.140108
  17. T.S. Orlova, D.I. Sadykov, D.V. Danilov, N.A. Enikeev, M.Y. Murashkin, Mater. Lett., 303, 130490 (2021). DOI: 10.1016/j.matlet.2021.130490
  18. A.S. Karolik, A.A. Luhvich, J. Phys.: Condens. Matter., 6 (4), 873 (1994). DOI: 10.1088/0953-8984/6/4/007
  19. T.S. Orlova, N.V. Skiba, A.M. Mavlyutov, M.Y. Murashkin, R.Z. Valiev, M.Y. Gutkin, Rev. Adv. Mater. Sci., 57 (2), 224 (2018). DOI: 10.1515/rams-2018-0068

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru