Increased specific resistivity of grain boundaries in nonequilibrium state in ultrafine-grained Al-Cu-Zr alloy
Mavlyutov A. M.
1, Orlova T. S.
11Ioffe Institute, St. Petersburg, Russia
Email: a.m.mavlyutov@gmail.com, orlova.t@mail.ioffe.ru
In this work an Al-Cu-Zr alloy with ultrafine-grained (UFG) structure formed by high-pressure torsion is studied. Different structural states of grain boundaries in the UFG structure were achieved through subsequent annealing and additional deformation. The specific resistivity of the alloy in the temperature range 77-300 K has been experimentally determined for each state. Based on the microstructural parameters of the alloy, analysis of changes in average specific resistivity of grain boundaries was carried out. It is shown that additional deformation, which introduces excess grain boundary dislocation density (nonequilibrium state), leads to its increase by ≥ 20 %. Keywords: grain boundary resistivity, nonequilibrium grain boundaries, severe plastic deformation, microstructure.
- P.L. Rositter, The electrical resistivity of metals and alloys (Cambridge University Press, Cambridge, 2003)
- I. Nakamichi, J. Sci. Hiroshima Univ., 54 (1), 49 (1990)
- M.Y. Murashkin, N.A. Enikeev, X. Sauvage, Mater. Trans., 64 (8), 833 (2023). DOI: 10.2320/matertrans.MT-MF2022048
- D. Josell, S.H. Brongersma, Z. Tokei, Annu. Rev. Mater. Res., 39, 231 (2009). DOI: 10.1146/annurev-matsci-082908-14541
- X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Mater. Sci. Eng. A, 540, 1 (2012). DOI: 10.1016/j.msea.2012.01.080
- A.A. Nazarov, Lett. Mater., 8 (3), 372 (2018). DOI: 10.22226/2410-3535-2018-3-372-381
- H. Zhao, B. Gault, F. De Geuser, D. Ponge, D. Raabe, MATEC Web of Conf., 326, 01004 (2020). DOI: 10.1051/matecconf/202032601004
- T. Masuda, X. Sauvage, S. Hirosawa, Z. Horita, Mater. Sci. Eng. A, 793, 139668 (2020). DOI: 10.1016/j.msea.2020.139668
- I. Bakonyi, V.A. Isnaini, T. Kolonits, Zs. Czigany, J. Gubicza, L.K. Varga, E. Toth-Kadar, L. Pogany, L. Peter, H. Ebert, Phil. Mag., 99 (9), 1139 (2019). DOI: 10.1080/14786435.2019.1580399
- H. Bishara, S. Lee, T. Brink, M. Ghidelli, G. Dehm, ACS Nano, 15 (10), 16607 (2021). DOI: 10.1021/acsnano.1c06367
- J.L. McCrea, K.T. Aust, G. Palumbo, U. Erb, MRS Online Proc. Lib. Arch., 581, 461 (1999). DOI: 10.1557/PROC-581-461
- G. Kim, X. Chai, L. Yu, X. Cheng, D.S. Gianola, Scripta Mater., 123, 113 (2016). DOI: 10.1016/j.scriptamat.2016.06.008
- Y. Miyajima, S.Y. Komatsu, M. Mitsuhara, S. Hata, H. Nakashima, N. Tsuji, Phil. Mag., 90 (34), 4475 (2010). DOI: 10.1080/14786435.2010.510453
- M. Mito, H. Matsui, T. Yoshida, T. Anami, K. Tsuruta, H. Deguchi, T. Iwamoto, D. Terada, Y. Miyajima, N. Tsuji, Rev. Sci. Instrum., 87 (5), 053905 (2016). DOI: 10.1063/1.4950868
- T.S. Orlova, A.M. Mavlyutov, A.S. Bondarenko, I.A. Kasatkin, M.Y. Murashkin, R.Z. Valiev, Phil. Mag., 96 (23), 2429 (2016). DOI: 10.1080/14786435.2016.1204022
- X. Sauvage, F. Cuvilly, A. Russell, K. Edalati, Mater. Sci. Eng. A, 798, 140108 (2020). DOI: 10.1016/j.msea.2020.140108
- T.S. Orlova, D.I. Sadykov, D.V. Danilov, N.A. Enikeev, M.Y. Murashkin, Mater. Lett., 303, 130490 (2021). DOI: 10.1016/j.matlet.2021.130490
- A.S. Karolik, A.A. Luhvich, J. Phys.: Condens. Matter., 6 (4), 873 (1994). DOI: 10.1088/0953-8984/6/4/007
- T.S. Orlova, N.V. Skiba, A.M. Mavlyutov, M.Y. Murashkin, R.Z. Valiev, M.Y. Gutkin, Rev. Adv. Mater. Sci., 57 (2), 224 (2018). DOI: 10.1515/rams-2018-0068
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.