Physics of the Solid State
Volumes and Issues
Magnitic status of molibden disulfide and intercalated compounds in the Cr-MoS2 system
1
1Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
Email: v.g.pleshchev@urfu.ru

PDF
In the system of synthesized phases with quasi-dimensional structure CrxMoS2 at 0≤ x≤0.5 the magnetic properties of both initial molybdenum disulfide and intercalated compounds on its basis have been studied. For molybdenum disulfide the value of effective magnetic moment and paramagnetic Curie temperature with positive value were determined. The possibility of realization of magnetically ordered states of different type in compounds with different content of chromium atoms based on the analysis of temperature dependences of magnetic susceptibility, the sign of paramagnetic Curie temperature and the difference of temperature dependences of effective magnetic moments is shown. Keywords: molybdenum disulfide, chromium, intercalation, magnetic susceptibility, effective magnetic moment.
  1. S.S.P. Parkin, R.H. Friend. Physica B+C 99, 219 (1980). DOI: 10.1016/0378-4363(80)90236-3
  2. R.H. Friend, A.D. Yoffe. Adv. Phys. 36, 1, 1 (1987). http://dx.doi.org/10.1080/00018738700101951
  3. L.A. Chernozatonsky, A.A. Artyukh. UVN 188, 1, 3 (2018) (in Russian). DOI: 10.3367/UFNr.2017.02.038065
  4. L. Song, H. Li, Y. Zhang, J. Shi. J. Appl. Phys. 131, 060902 (2022). DOI: 10.1063/5.0083929
  5. V.L. Kalichman, J.S. Umansky. UVN 108, 3, 503 (1972). (in Russian). DOI: 10.3367/UFNr.0108.197211d.0503
  6. S.R.G. Thakurta, A.K. Dutta. J. Phys. Chem. Solids 44, 5, 407 (1983). DOI: 10.1016/0022-3697(83)90068-9
  7. D.G. Kvashnin, L.A. Chernozatonsky, Pis'ma v ZhETF 105, 4, 230 (2017). DOI: 10.7868/S0370274X17040099
  8. P. Vaquero, M.L. Kosidowski, A.V. Powell. Chem. Mater. 14, 3, 1201 (2002). DOI: 10.1021/cm010720k
  9. Sh. Fu, K. Kang, K. Shayan, A. Yoshimura, S. Dadras, X. Wang, L. Zhang, S. Chen, N. Liu, A. Jindal, X. Li, A.N. Pasupathy, A.N. Vamivakas, V. Meunier, S. Strauf, E.-H. Yang. Nat. Comm. 11, 1, 2034 (2020). DOI: 10.1038/s41467-020-15877-7
  10. S. Tongay, S.S. Varnoosfaderani, B.R. Appleton, Ju. Wu, A.F. Hebard. Appl. Phys. Lett. 101, 123105 (2012). http://dx.doi.org/10.1063/1.4753797
  11. V.G. Pleschev, N.V. Baranov, A.N. Titov, K. Inoue, M.I. Bartashevich, T. Goto. J. Alloys. Comp. 320, 1, 13 (2001). DOI: 10.1016/S0925-8388(01)00924-0
  12. V.G. Pleschev, A.V. Korolev, Y.A. Dorofeev. FTT 46, 2, 282 (2004)
  13. E.M. Sherokalova, N.V. Selezneva, V.G. Pleshchev. FTT 64, 4, 437 (2022). DOI: 10.21883/FTT.2022.04.52183.256
  14. N.V. Selezneva, N.V. Baranov, V.G. Pleschev, N.V. Mushnikov, V.I. Maksimov. FTT 53, 2, 308 (2011). (in Russian)
  15. V.G. Pleschev, N.V. Selezneva. FTT 60, 2, 245 (2018). (in Russian). DOI: 10.21883/ftt.2018.02.45375.219
  16. V.G. Pleschev, N.V. Selezneva. FTT 61, 3, 472 (2019). (in Russian). DOI: 10.21883/FTT.2019.03.47238.274
  17. International Centre for Difraction Data-ICDD-2012 [Powder Difraction Database --- PDF-2]. https://www.icdd.com
  18. M.S. Whittingham, F.R. Gamble. Mat. Res. Bull. 10, 5, 363 (1975)
  19. H. Yang, S.W. Kim, M. Chowalla, Y.H. Lee. Nat. Phys. 13, 10, 931 (2017). DOI: 10.1038/NPHYS4188
  20. B. Zhao, D.Y. Shen, Z.C. Zhang, P. Lu, M. Hossain, J. Li, B. Li, X.D. Duan. Adv. Funct. Mater. 31, 48, 2105132 (2021). DOI: 10.1002/adfm.202105132
  21. V.G. Pleschev. FTT 64, 5, 551 (2022). (in Russian). DOI: 10.21883/FTT.2022.05.52335.281

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru