Postponing transition to turbulence in the swept wing boundary layer by means of stationary disturbances control using plasma actuator
Kotvitskii A. Ya.1, Abdullaev A. A.1,2, Ustinov M. V.3, Moralev I. A.1
1Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
3Central Aerohydrodynamic Institute named after Prof.N.E.Zhukovsky, Zhukovsky, Russia
Email: morler@mail.ru
Control of a laminar-turbulent transition, driven by cross-flow instability in a swept wing boundary layer, is attempted using close-loop suppression of natural stationary disturbances. To fulfill this task, a control system based on multichannel plasma actuator, particle image velocimetry- base sensor and controller was designed and built. Control was based on the closed -loop optimization of the actuator voltages, implemented by gradient descent algorithm. Control was implemented for the stationary cross-flow vortices excited by isolated roughness on the plate surface. Reduction of the disturbances amplitude was achieved, with a significant downstream shift of the transition region. Keywords: feed-backward control, plasma actuator, flow control, barrier discharge, boundary layer.
- G. Schrauf, Aeronaut. J., 109, 639 (2005). DOI: 10.1017/S000192400000097X
- H. Bippes, Prog. Aerosp. Sci., 35, 363 (1999). DOI: 10.1016/S0376-0421(99)00002-0
- W.S. Saric, H.L. Reed, E.B. White, Annu. Rev. Fluid Mech., 35 (1989), 413 (2003). DOI: 10.1146/annurev.fluid.35.101101.161045
- Y.S. Kachanov, Annu. Rev. Fluid Mech., 26, 411 (1994). DOI: 10.1146/annurev.fl.26.010194.002211
- M.V. Ustinov, Y.S. Kachanov, Phys. Fluids, 33 (9), 094105 (2021). DOI: 10.1063/5.0057853
- D.A. Mischenko, A.V. Ivanov, M.V. Ustinov, AIP Conf. Proc., 2027, 030152 (2018). DOI: 10.1063/1.5065246
- S. Yadala, Control of stationary crossflow instability using DBD plasma actuators (Delft, 2016). https://resolver.tudelft.nl/uuid:3db8e948-1fb8-4390-a117-3b5eaae8cb83
- P.C. Dorr, M.J. Kloker, J. Phys. D, 48 (28), 285205 (2015). DOI: 10.1088/0022-3727/48/28/285205
- S. Yadala, M.T. Hehner, J. Serpieri, N. Benard, M. Kotsonis, in 2018 Flow Control Conf. (Atlanta, Georgia. 2018), AIAA 2018-3215. DOI: 10.2514/6.2018-3215
- R. Radeztsky, M. Reibert, W. Saric, in Fluid Dynamics Conf. (Colorado Springs, CO, 1994), AlAA-2373. DOI: 10.2514/6.1994-2373
- A.S.W. Thomas, J. Fluid Mech., 137, 233 (1983). DOI: 10.1017/S0022112083002384
- D.B.S. Audiffred, A.V.G. Cavalieri, I.A. Maia, E. Martini, P. Jordan, J. Fluid Mech., 994, A15 (2024). DOI: 10.1017/jfm.2024.569
- V.F. Kopiev, O.P. Bychkov, V.A. Kopiev, G.A. Faranosov, I.A. Moralev, P.N. Kazansky, Acoust. Phys., 67 (4), 413 (2021). DOI: 10.1134/S1063771021040059
- A. Abdullaev, A. Kotvitskii, I. Moralev, M. Ustinov, Aerospace, 10 (5), 469 (2023). DOI: 10.3390/aerospace10050469
- J. Serpieri, S.Y. Venkata, M. Kotsonis, J. Fluid Mech., 833, 164 (2017). DOI: 10.1017/jfm.2017.707
- S. Yadala, M. Hehner, J. Serpieri, N. Benard, M. Kotsonis, AIAA J., 59 (9), 060101 (2021). DOI: 10.2514/1.J060101
- K.-S. Choi, J.-H. Kim, Exp. Fluids, 59 (10), 159 (2018). DOI: 10.1007/s00348-018-2609-x
- S. Baranov, I. Moralev, M. Ustinov, D. Sboev, S. Tolkachev, in Proc. 593 Euromech. Colloqium Plasma-based actuators for flow control: recent developments and future directions (Delft, Netherlands, 2018)
- I. Moralev, V. Bityurin, A. Firsov, V. Shcherbakova, I. Selivonin, M. Ustinov, Proc. Inst. Mech. Eng. G, 234 (1), 42 (2020). DOI: 10.1007/10.1177/0954410018796988
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.