Damped vacuum discharge as a variant of EUV radiation source for lithography
Stepanov L.V.1,2, Antsiferov P.S.1,2, Matyukhin N.D.1,3
1Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
2National Research University Higher School of Economics, Moscow, Russia
3Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
Email: lvstepanov@edu.hse.ru

PDF
The paper describes an experimental setup designed to produce a damped vacuum discharge with a peak current of 18 kA and a duration of less than 1 μs. In this type of discharge, a previously observed phenomenon is realized -namely, the generation of multicharged ions in a vacuum discharge during the plasma column growing stage, without pinching. The main idea is to rapidly terminate the discharge current immediately after this stage. This may enable the development of a discharge-based radiation source with a low level of electrode erosion. The discharge current is controlled by damping the discharge circuit, achieved by introducing a ballast resistor into the electrical circuit. Test measurements confirmed the formation of multicharged iron ions (up to Fe VIII) at times between 100 and 100-200 ns after discharge initiation. The dependence of the discharge development dynamics and the intensity of its emission in the extreme ultraviolet (EUV) range on the electrode gap was studied. EUV emission at a wavelength of 13.5 nm was demonstrated when a tin anode was used in the discharge. Keywords: electrical discharges, extreme ultraviolet radiation, extreme ultraviolet spectra, multicharged ions.
  1. J. Beckers, T. van de Ven, R. van der Horst, D. Astakhov, V. Banine. Appl. Sci., 9, 2827 (2019). DOI: 10.3390/app9142827
  2. D.B. Abramenko, P.S. Antsiferov, D.I. Astakhov, A.Yu. Vinokhodov, I.Yu. Vichev, R.R. Gayazov, A.S. Grushin, L.A. Dorokhin, V.V. Ivanov, D.A. Kim, K.N. Koshelev, P.V. Krainov, M.S. Krivokorytov, V.M. Krivtsun, B.V. Lakatosh, A.A. Lash, V.V. Medvedev, A.N. Ryabtsev, Yu.V. Sidelnikov, E.P. Snegirev, A.D. Solomyannaya, M.V. Spiridonov, I.P. Tsygvintsev, O.F. Yakushev, A.A. Yakushkin. UFN, 189, 323 (2019) (in Russian). DOI: 10.3367/UFNr.2018.06.038447
  3. V.Y. Banine, K.N. Koshelev, G.H.P.M. Swinkels. J. Phys. D: Appl. Phys., 44, 253001 (2011). DOI: 10.1088/0022-3727/44/25/253001
  4. P.S. Antsiferov, L.A. Dorokhin. Fizika plazmy, 48 (in Russian). (11), 1086 (2022). DOI: 10.31857/S0367292122600492
  5. P.S. Antsiferov, L.V. Stepanov, N.D. Matyukhin. Fizika plazmy, (in Russian). 50 (6), 701 (2024). DOI: 10.31857/S0367292124060076
  6. P.S. Antsiferov, L.A. Dorokhin, P.V. Krainov. Rev. Sci. Instrum., 87 (5), 053106 (2016). DOI: 10.1063/1.4945654
  7. T.N. Lie, R.C. Elton. Phys. Rev. A, 3, 865 (1971). DOI: 10.1103/PhysRevA.3.865
  8. A. Kramida, Yu. Ralchenko, J. Reader. and NIST ASD Team (2023). NIST Atomic Spectra Database (version 5.11), [Online]. Available: https://physics.nist.gov/asd [Mon Aug. 26, 2025]. National Institute of Standards and Technology, Gaithersburg, MD
  9. I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, D. Brown. Adv. Opt. Technol., 6,173 (2017). DOI: 10.1515/aot-2017-0029

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru