On the properties of the transition layer between the silicon substrate and the ferroelectric or high-k-dielectric insulating gap
The dependence of the properties of buffer layers at the interfaces of silicon-ferroelectric and silicon-high-k-insulator on the material and thickness of the insulator deposited on the substrate is analyzed. Films of ferroelectric Ba0.8Sr0.2TiO3 and high-k-insulator HfO2 with a set of thicknesses from 20 to 150 nm and the same sizes of field contacts were deposited on the same plate of n-type silicon with natural oxide. It turned out that the capacitance values in each of the saturation regions of the high-frequency capacitance-voltage characteristics for all thicknesses of the insulating layer are close to each other. For objects with high-k-insulator, a decrease in capacitance with an increase in the thickness of the insulator was observed. The graphs of the dependences of the band bending in the semiconductor on the field voltage and the spectral density of electron traps in the buffer layers of the structures with HfO2 on the energy in the silicon band gap are constructed. It is shown that the concentration and spectrum of electron traps at the contact of silicon with the ferroelectric are practically independent of the thickness of the insulating layer. The buffer layer at the interface of silicon with a high-k dielectric changes its properties significantly with increasing thickness of the insulator - the spectral curve of electron traps shifts deep into the band gap of the semiconductor, expands, and its minimum value decreases. Keywords: silicon-ferroelectric/silicon-high-k-insulator interfaces, transition (buffer) layer, electron traps, high-frequency capacitance-voltage characteristics.
- K.A. Vorotilov, V.M. Mukhortov, A.S. Sigov. Integrirovannye segnetoelektricheskie ustroystva. Energoatomizdat, M. (2011). 175 s. (in Russian)
- J.Y. Park, K. Yang, D.H. Lee, S.H. Kim, Y. Lee, P.R.S. Reddy, J.L. Jones, M.H. Park. J. Appl. Phys. 128, 24, 240904 (2020)
- B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T.J. Marks, A. Facchetti. Chem. Rev. 118, 11, 5690 (2018)
- E.I. Goldman, G.V. Chucheva, D.A. Belorusov. Ceram. Int. 47, 15, 21248 (2021)
- D.A. Belorusov, E.I. Goldman, G.V. Chucheva. Phys. Solid State 63, 13, 2140 (2021)
- E. Goldman, G. Chucheva, D. Belorusov. Ceram. Int. 50, 6, 9678 (2024)
- M.S. Ivanov, M.S. Afanas'ev. Phys. Solid State 51, 7, 1328 (2009)
- D.A. Kiselev, M.S. Afanasiev, S.A. Levashov, G.V. Chucheva. Phys. Solid State 57, 6, 1151 (2015)
- M.S. Afanasiev, D.A. Belorusov, D.A. Kiselev, V.A. Luzanov, G.V. Chucheva. Phys. Solid State 65, 4, 557 (2023)
- E.I. Gol'dman, A.G. Zhdan, G.V. Chucheva. Instrum. Experiment. Techniques 40, 6, 841 (1997).]
- E.I. Goldman, V.G. Naryshkina, G.V. Chucheva. Phys. Solid State 62, 8, 1380 (2020)
- F.M. Li, B.C. Bayer, S. Hofmann, S.P. Speakman, C. Ducati, W.I. Milne, A.J. Flewitt. Physica Status Solidi B 250, 5, 957 (2013)
- E.I. Goldman, G.V. Chucheva, M.S. Afanasiev, D.A. Kiselev. Chaos, Solitons \& Fractals 141, 110315 (2020)
- S.M. Sze, K. Ng Kwok. Physics of Semiconductor Devices, Willey Interscience publication, N.Y. (2007). 832 p
- A.N. Tikhonov, V.Ya. Arsenin. Metody resheniya nekorrektnykh zadach. Nauka, M. (1986). 288 s. (In Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.