Resonant Auger recombination in HgTe/CdHgTe quantum wells for mid infrared lasers
Zholudev M. S.
1,2, Kudryavtsev K. E.
1, Morozov S. V.
1,21Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Lobachevsky State University, Nizhny Novgorod, Russia
Email: zholudev@ipmras.ru
Theoretical estimations are made for the resonant behavior of Auger recombination processes in heterostructures with Hg(Cd)Te/CdHgTe quantum wells designed for middle infrared range. Detailed calculations of the localized and delocalized (above-barrier) hole states are carried out in Hg(Cd)Te/CdHgTe quantum wells. The most probable mechanism of the resonant Auger recombination is established. Optimized structure designs are suggested to suppress the resonant non-radiative recombination processes. Keywords: Auger recombination, Mercury-Cadmium-Telluride, quantum well, middle infrared, semiconductor laser.
- Z. Du, S. Zhang, J. Li, N. Gao, K. Tong, Appl. Sci., 9, 338 (2019). DOI: 10.3390/app9020338
- J.R. Meyer, C.L. Canedy, M. Kim, C.S. Kim, C.D. Merritt, W.W. Bewley, I. Vurgaftman, IEEE J. Quantum Electron., 57 (5), 2500110 (2021). DOI: 10.1109/JQE.2021.3096219
- T.D. Eales, I.P. Marko, B.A. Ikyo, A.R. Adams, S. Arafin, S. Sprengel, M.-C. Amann, S.J. Sweeney, IEEE J. Select. Top. Quantum Electron., 23 (6), 1500909 (2017). DOI: 10.1109/JSTQE.2017.2687823
- K.E. Kudryavtsev, A.A. Yantser, M.A. Fadeev, V.V. Rumyantsev, A.A. Dubinov, V.Ya. Aleshkin, N.N. Mikhailov, S.A. Dvoretsky, V.I. Gavrilenko, S.V. Morozov, Appl. Phys. Lett., 123, 182102 (2023). DOI: 10.1063/5.0177912
- M.G. Burt, J. Phys.: Condens. Matter, 4, 6651 (1992). DOI: 10.1088/0953-8984/4/32/003
- B.A. Foreman, Phys. Rev. B, 48, 4964 (1993). DOI: 10.1103/PhysRevB.48.4964
- E.G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C.R. Becker, G. Landwehr, H. Buhmann, L.W. Molenkamp, Phys. Rev. B, 72, 035321 (2005). DOI: 10.1103/PhysRevB.72.035321
- M. Zholudev, F. Teppe, M. Orlita, C. Consejo, J. Torres, N. Dyakonova, M. Czapkiewicz, J. Wrobel, G. Grabecki, N. Mikhailov, S. Dvoretskii, A. Ikonnikov, K. Spirin, V. Aleshkin, V. Gavrilenko, W. Knap, Phys. Rev. B, 86, 205420 (2012). DOI: 10.1103/PhysRevB.86.205420
- J. Los, A. Fasolino, A. Catellani, Phys. Rev. B, 53, 4630 (1996). DOI: 10.1103/PhysRevB.53.4630
- J.P. Laurenti, J. Camassel, A. Bouhemadou, B. Toulouse, R. Legros, A. Lusson, J. Appl. Phys., 67, 6454 (1990). DOI: 10.1063/1.345119
- C.R. Becker, V. Latussek, A. Pfeuffer-Jeschke, G. Landwehr, L.W. Molenkamp, Phys. Rev. B, 62, 10353 (2000). DOI: 10.1103/PhysRevB.62.10353
- D.Y.K. Ko, J.C. Inkson, Phys. Rev. B, 38, 9945 (1988). DOI: 10.1103/PhysRevB.38.9945
- M.S. Zholudev, O.M. Litovchenko, S.V. Morozov, Semicond. Sci. Technol., 40, 035001 (2025). DOI: 10.1088/1361-6641/ada9cc
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.