Influence of magnetron sputtering modes on properties of protective Ti-Al-Ta-N coatings
Derbin A.Yu.1, Shugurov A.R.1, Kuzminov E.D.1, Panin A.V.1
1Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
Email: derbinalexei@yandex.ru

PDF
Applying of protective coatings is an effective way to increase the resistance of various parts and components against wear, oxidation and corrosion. In this article a comparative analysis of Ti-Al-Ta-N coatings deposited by high-power impulse magnetron sputtering and direct current magnetron sputtering is carried out. It is shown that the use of the combined sputtering mode can significantly increase the deposition rate. The influence of the deposition modes and the multilayer architecture of these coatings on their mechanical and tribological characteristics, as well as oxidation resistance, is investigated. It is established that optimization of the architecture of the Ti-Al-Ta-N multilayer coatings makes it possible to increase their hardness and wear resistance, but it has almost no effect on their oxidation resistance Keywords: Ti-Al-Ta-N coatings, magnetron sputtering, mechanical properties, oxidation resistance.
  1. D.G. Sangiovanni, V. Chirita, L. Hultman. Thin Solid Films, 520, 4080 (2012). DOI: 10.1016/j.tsf.2012.01.030
  2. R. Rachbauer, D. Holec, P.H. Mayrhofer. Surf. Coat. Technol., 211, 98 (2012). DOI: 10.1016/j.surfcoat.2011.07.009
  3. S.V. Eremeev, A.R. Shugurov. Surf. Coat. Technol., 395, 125803 (2020). DOI: 10.1016/j.surfcoat.2020.125802
  4. M. Mikula, M. Truchly, D.G. Sangiovanni, D. Plasienka, T. Roch, M. Gregor, P. Durina, M. Janik, P. Kus. J. Vac. Sci. Technol. A, 35 (6), 060602 (2017). DOI: 10.1116/1.4997431
  5. W.M. Seidl, M. Bartosik, S. Kolozsvari, H. Bolvardi, P.H. Mayrhofer. Vacuum, 150, 24 (2018). DOI: 10.1016/j.vacuum.2018.01.028
  6. A.R. Shugurov, E.D. Kuzminov, A.M. Kasterov, A.V. Panin, A.I. Dmitriev. Surf. Coat. Technol., 382, 125219 (2020). DOI: 10.1016/j.surfcoat.2019.125219
  7. R. Hollerweger, H. Riedl, J. Paulitsch, M. Arndt, R. Rachbauer, P. Polcik, S. Primig, P.H. Mayrhofer. Surf. Coat. Technol., 257, 78 (2014). DOI: 10.1016/J.SURFCOAT.2014.02.067
  8. M. Pfeiler, C. Scheu, H. Hutter, J. Schnoller, C. Michotte, C. Mitterer, M. Kathrein. J. Vac. Sci. Technol. A, 27, 554 (2009). DOI: 10.1116/1.3119671
  9. C.M. Koller, S.A. Glatz, H. Riedl, S. Kolozsvari, P. Polcik, H. Bolvardi, P.H. Mayrhofer. Surf. Coat. Technol., 385, 125355 (2020). DOI: 10.1016/J.SURFCOAT.2020.125355
  10. X. Sui, G. Li, C. Jiang, H. Yu, K. Wang, Q. Wang. Int. J. Refract. Met. Hard Mater., 58, 152 (2016). DOI: 10.1016/j.ijrmhm.2016.04.014
  11. E. Contreras Romero, J. Corti nez Osorio, R. Talamantes Soto, A. Hurtado Maci as, M. Gomez Botero. Surf. Coat. Technol., 377, 124875 (2019). DOI: 10.1016/J.SURFCOAT.2019.07.086
  12. Y. Choi, S. Jeon, J.M. Seok, S.H. Gyoo, H.H. Chun, Y. Lee, H. Lee. Appl. Surf. Sci., 258, 8752 (2012). DOI: 10.1016/j.apsusc.2012.05.086
  13. W. Lu, G. Li, X. Li, S. Liu, J. Deng, Q. Wang. Ceram. Int., 50, 920 (2024). DOI: 10.1016/j.ceramint.2023.10.177
  14. W. Wang, G. Zhang, C. Wang, T. Wang, Y. Zhang, T. Xin. J. Alloys Compd., 946, 169385 (2023). DOI: 10.1016/j.jallcom.2023.169385
  15. A.D. Korotaev, A.N. Tyumentsev. Phys. Mesomech., 26, 137 (2023). DOI: 10.1134/S1029959923020030
  16. A.R. Shugurov, A.Y. Derbin, E.D. Kuzminov. Vacuum, 230, 113636 (2024). DOI: 10.1016/j.vacuum.2024.113636
  17. A. Anders. J. Appl. Phys., 121 (171101), 1 (2017). DOI: 10.1063/1.4978350
  18. G. Greczynski, S. Mraz, J.M. Schneider, L. Hultman. J. Appl. Phys., 127, 180901 (2020). DOI: 10.1063/1.5141342
  19. P. Scherrer. GG-Nachrichten, 2, 98 (1918)
  20. G.G. Stoney. Proc. R. Soc. Lond. Ser. A., 82, 172 (1909). DOI: 10.1098/rspa.1909.0021
  21. G.T.P. Azar, D. Er, M. Urgen. Surf. Coat. Technol., 350, 1050 (2018). DOI: 10.1016/j.surfcoat.2018.02.066
  22. H. Mei, J.C. Ding, X. Xiao, Q. Luo, R. Wang, Q. Zhang, W. Gong, Q. Wang. Surf. Coat. Technol., 405, 126514 (2021). DOI: 10.1016/j.surfcoat.2020.126514
  23. J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu. J. Phys. D: Appl. Phys., 30, 5 (1997). DOI: 10.1088/0022-3727/30/1/002
  24. I. Petrov, L. Hultman, J.-E. Sundgren, J.E. Greene. J. Vac. Sci. Technol. A, 10, 265 (1992). DOI: 10.1116/1.578074
  25. C.-H. Ma, J.-H. Huang, H. Chen. Thin Solid Films, 446, 184 (2004). DOI: 10.1016/j.tsf.2003.09.063
  26. N.F.L. Dias, A.L. Meijer, D. Biermann, W. Tillmann. Surf. Coat. Technol., 487, 130987 (2024). DOI: 10.1016/j.surfcoat.2024.130987
  27. A. Leyland, A. Matthews. Wear, 246, 1 (2000). DOI: 10.1016/S0043-1648(00)00488-9
  28. J. Musil, F. Kunc, H. Zeman, H. Polakova. Surf. Coat. Technol., 154, 304 (2002). DOI: 10.1016/S0257-8972(01)01714-5
  29. V. Khetan, N. Valle, D. Duday, C. Michotte, M.-P. Delplancke-Ogletree, P. Choquet. ACS Appl. Mater. Interfaces, 6, 4115 (2014). DOI: 10.1021/am405727p
  30. A.R. Shugurov, A.V. Panin, A.M. Kasterov. Surf. Coat. Technol., 421, 127488 (2021). DOI: 10.1016/j.surfcoat.2021.127488

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru